The energy production of clean technologies has significantly improved in recent decades. Innovations include tracking and bifacial solar panels, larger wind turbine generators built on taller towers, and blades with the aerodynamic ability to better capture energy at differing windspeeds. Existing wind and solar farms are often located on sites with the highest renewables potential—for example, those with high irradiation or wind speeds and with close interconnections. Since these projects often deploy older technologies, they may be producing less than their full renewables potential. As projects age, owners and grid planners could consider seeking out sites that can produce incrementally more energy with the same footprint and repowering where the improved output outweighs the cost of scrapping a generation source. In Germany, for example, repowering could increase capacity by 45 GW by 2030, lowering the overall need for land. 4. Considering the introduction of a fast-tracking process for certain projects that support transition goals. Stakeholders could help ensure the timely expansion of infrastructure by reviewing the criteria for fast-tracking large projects critical for the European Union’s energy security and decarbonization efforts. As of November 2022, for example, the European Union allows member states to apply for the fast-tracking of projects focusing on the offshore electricity grid and renewable, low-carbon gas corridors, such as those for hydrogen. These projects, which are designed to help achieve the European Union’s overall energy and climate policy objectives, are subject to simplified administrative and judicial procedures. Stakeholders also could consider support for build permitting and siting through regional collaboration and cooperation among EU countries. 5. Weighing the potential benefits of one-stop shopping and simplifying processes. To harmonize regulations and establish a central
infrastructure authority to oversee permitting timelines, the United Kingdom has undertaken efforts through the Government Major Projects Portfolio (GMPP) from the Infrastructure and Projects Authority (IPA). The new system makes processes more flexible to accommodate changes in technology. Changing a turbine for a more advanced model, for example, would not trigger a restart of the permitting procedure if the change does not increase permitting- relevant risks. What’s more, permitting organizations, developers, and transmission system operators could improve their ability to manage complex projects. Digital tools, for example, could track the status of permits and potentially create a new action-oriented culture of interaction between developers and permitting organizations. 6. Launching social-awareness campaigns and implementing incentives to improve public acceptance of solar and wind projects. Public- opinion concerns about renewables are often best addressed with local solutions that involve the public—not just landowners—in the planning process. Making local communities more aware of the benefits of projects and increasing the transparency of procedures could also ease local concerns. Projects that aim to foster public acceptance have encouraged local ownership of renewable-energy sources by citizens and businesses. To achieve the target of 6 GW of onshore wind power by 2020, the Netherlands, for example, initiated a goal of 50 percent local ownership of facilities for the production of onshore renewables by 2023. The country gave residents and businesses the opportunity to participate in the decision-making process, from siting to sharing in the revenues. Ultimately, fostering public participation and shared ownership in the development of renewables created widespread acceptance of wind parks across the Dutch provinces.
Accelerating the journey to net zero
62
Made with FlippingBook Online newsletter maker