Globally, the wind dispersal zones followed a preferred direction from south to north/northwest, influenced by wind direction, wind speed, topography, and temperature. This highlights the anisotropic nature of the wind, which contrasts with the usual radius surveillance zone established around infected outbreaks. The extent of the predicted risk zone exceeded the usual 150 km distance to the north and was more limited to the south. In conclusion, despite limitations and high uncertainties in future meteorological conditions, the model provides valuable insights into precise risk zones of dispersal adapted to local environmental conditions on a European scale. These findings can be used to raise awareness and guide future risk assessment frameworks, making them a useful tool for the management and prevention of future Culicoides -borne virus outbreaks.
References:
Aguilar-Vega, C., Fernández-Carrión, E. and Sánchez- Vizcaíno, J. M. (2019). The possible route of introduction of bluetongue virus serotype 3 into Sicily by windborne transportation of infected Culicoides spp. Transboundary and Emerging Diseases, 66(4), 1665–1673. https://doi.org/10.1111/tbed.13201 Ducheyne, E., Lange, M., Stede, Y. V. der, Meroc, E., Durand, B. and Hendrickx, G. (2011). A stochastic predictive model for the natural spread of bluetongue. Preventive Veterinary Medicine, 99(1), 48–59. https://doi.org/10.1016/j.prevetmed.2011.01.003 Eagles, D., Deveson, T., Walker, P. J., Zalucki, M. P. and Durr, P. (2012). Evaluation of long-distance dispersal of Culicoides midges into northern Australia using a migration model. Medical and Veterinary Entomology, 26(3), 334–340. https://doi.org/10.1111/j.1365-2915.2011.01005.x Eagles, Debbie, Melville, L., Weir, R., Davis, S., Bellis, G., Zalucki, M. P., Walker, P. J. and Durr, P. A. (2014). Long- distance aerial dispersal modelling of Culicoides biting midges: case studies of incursions into Australia. BMC Veterinary Research, 10(1), 135. https://doi.org/10.1186/1746-6148-10-135 García-Lastra, R., Leginagoikoa, I., Plazaola, J. M., Ocabo, B., Aduriz, G., Nunes, T. and Juste, R. A. (2012). Bluetongue Virus Serotype 1 Outbreak in the Basque Country (Northern Spain) 2007–2008. Data Support a Primary Vector Windborne Transport. PLoS ONE, 7(3), e34421. https://doi.org/10.1371/journal.pone.0034421
Hall, D. R., Torpy, J., Nye, R., Emma and Cowled, B. (2022). Quantitative risk assessment for the introduction of lumpy skin disease virus into Australia via non-regulated pathways. CABI Compendium, CABI Compendium https://doi.org/10.1079/cabicompendium.76779 Jacquet, S., Huber, K., Pagès, N., Talavera, S., Burgin, L. E., Carpenter, S., Sanders, C., Dicko, A. H., Djerbal, M., Goffredo, M., Lhor, Y., Lucientes, J., Miranda-Chueca, M. A., Fonseca, I. P. D., Ramilo, D. W., Setier-Rio, M.-L., Bouyer, J., Chevillon, C., Balenghien, T., … Garros, C. (2016). Range expansion of the Bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport
events. Scientific Reports, 6(1), 27247. https://doi.org/10.1038/srep27247
Radici, A., Martinetti, D. and Bevacqua, D. (2022). Early- detection surveillance for stem rust of wheat: insights from a global epidemic network based on airborne connectivity and host phenology. Environmental Research Letters, 17(6), 064045. https://doi.org/10.1088/1748-9326/ac73aa Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D. and Ngan, F. (2015). NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, 96(12), 2059–2077. https://doi.org/10.1175/bams-d-14-00110.1
17
Made with FlippingBook flipbook maker