References
Albornoz F. (2016) Crop responses to nitrogen overfertilization: A review. Scientia Horticulturae , 205 , 79 – 83. https://doi.org/10.1016/j.scienta.2016.04.026
Baptist M.J., Dankers P., Cleveringa J., Sittoni L., Willemsen P.W.J.M., et al . (2021) Salt marsh construction as a nature-based solution in an estuarine social-ecological system. Nature-Based Solutions , 1 , 100005. https://doi.org/10.1016/j.nbsj.2021.100005
Bayraktarov E., Saunders M.I., Abdullah S., Mills M., Beher J., et al . (2016) The cost and feasibility of marine coastal restoration. Ecological Applications , 26 , 1055 – 1074. https://doi.org/10.1890/15-1077
Beare P.A. & Zedler J.B. (1987) Cattail invasion and persistence in a coastal salt marsh: The role of salinity reduction. Estuaries , 10 , 165 – 170. https://doi.org/10.2307/1352181
Cao H., Zhu Z., van Belzen J., Gourgue O., van de Koppel J., et al . (2021) Salt marsh establishment in poorly consolidated muddy systems: effects of surface drainage, elevation, and plant age. Ecosphere , 12 , e03755. https://doi.org/10.1002/ecs2.3755
Cutts V., Taylor N.G., Gaffi L., Hagemeijer W. & Sutherland W.J. (2024) Guidance on reprofiling salt marshes and intertidal flats. Conservation Guidance Series No. 5, v1.0 . https://doi.org/10.52201/CGS/NVIQ1970
Davis J., Currin C. & Morris J.T. (2017) Impacts of fertilization and tidal inundation on elevation change in microtidal, low relief salt marshes. Estuaries and Coasts , 40 , 1677 – 1687. https://doi.org/10.1007/s12237-017-0251-0
Emond C., Lapointe L., Hugron S. & Rochefort L. (2016) Reintroduction of salt marsh vegetation and phosphorus fertilisation improve plant colonisation on seawater-contaminated cutover bogs. Mires and Peat , 18 , Article 17. https://doi.org/10.19189/MaP.2015.OMB.209 Green J., Reichelt-Brushett A. & Jacobs S.W.L. (2009) Re-establishing a saltmarsh vegetation structure in a changing climate. Ecological Management and Restoration , 10 , 20 – 30. https://doi.org/10.1111/j.1442- 8903.2009.00438.x
Groenendijk A.M. (1986) Establishment of a Spartina anglica population on a tidal mudflat - a field experiment. Journal of Environmental Management , 22 , 1 – 12.
Guan B., Yu J., Lu Z., Xie W., Chen X. et al. (2011) The ecological effects of Suaeda salsa on repairing heavily degraded coastal saline alkaline wetlands in the Yellow River Delta. Acta Ecologica Sinica , 31 , 4835 – 4840. Available at: https://www.ecologica.cn/stxb/article/abstract/stxb201007010974
Hu Z., Ma Q., Cao H., Zhang Z., Tang C., et al. (2016) A trial study on revegetation of the native Scirpus mariqueter population in the coastal wetland of the Yangtze Estuary. Ecological Science , 35 , 1 – 7.
Liu Z., Fagherazzi S., Ma X., Xie C., Li J., et al . (2020) Consumer control and abiotic stresses constrain coastal saltmarsh restoration. Journal of Environmental Management , 274 , 111110. https://doi.org/10.1016/j.jenvman. 2020.111110
Malone T.C. & Newton A. (2020) The globalization of cultural eutrophication in the coastal ocean: Causes and consequences. Frontiers in Marine Science , 7 . https://doi.org/10.3389/fmars.2020.00670
O’Brien E.L. & Zedler J.B. (2006) Accelerating the restoration of vegetation in a southern California salt marsh. Wetlands Ecology and Management , 14 , 269 – 286. https://doi.org/10.1007/s11273-005-1480-8
Sparks E.L., Cebrian J., Biber P.D., Sheehan K.L. & Tobias C.R. (2013) Cost-effectiveness of two small-scale salt marsh restoration designs. Ecological Engineering , 53 , 250 – 256. https://doi.org/10.1016/j.ecoleng.2012.12.053
82
Made with FlippingBook - professional solution for displaying marketing and sales documents online