HOT|COOL NO. 1/2019 - "District Heating Finance and Economy"

P5

The challenge, therefore, was to set up a contract model that catered for both considerations. A realization of the surplus heat project could be attractive for both parties with the right agreement. What benefits did CP Kelco gain from an agreement with VEKS? • Constant and financially attractive sales of surplus heat produced in connection with the company's primary activity - to produce pectin. • An alternative to cooling the surplus heat in cooling towers and thereby minimizing future investments in noise reduction of existing cooling towers. What benefits did VEKS gain from an agreement with CP Kelco? • Future-proof and constant delivery of surplus heat at a competitive price, which in the first years would be on a par with the heat price from VEKS' alternative heat suppliers. • In the long term, the heat price from CP Kelco would be lower than VEKS' alternative heat purchase price from other suppliers. What are the benefits for both CP Kelco and VEKS with the agreement? • The heat agreement would contribute to both companies' environmental and climate-related objectives - a green CO2 footprint.

After about two years of negotiations, the heat agreement was signed in December 2016, and the planning of the technical installations began. One year later, in December 2017, the surplus heat project was formally put into operation. Schedule as well as budgets had been met. HOW IS THE SURPLUS HEAT UTILIZED? The production of pectin generates large amounts of surplus heat, which until now has been directed to cooling towers. The idea of the project was to utilize the surplus heat in the local district heating network as follows:

The surplus heat from the process, which has a temperature of 75°C, is led to a heat exchanger. Here, the surplus heat meets return water in the district heating network at a temperature of 47°C, which is heated to 72°C through the heat exchanger. For a large part of the year, this temperature is sufficient as flow temperature in the district heating network. If there is a need for a higher district heating flow temperature than 72°C, the temperature can be "boosted" via a heat pump, which is also provided with surplus heat from the process, at a temperature of 75°C. Thereby, the supply temperature in the district heating water can be increased from 72°C to 85°C, should the need arise. Since the transfer of surplus heat to the district heating network for a large part of the year only takes place through the heat exchanger, the COP for the overall system is calculated to be 18.5. The first year's operating experience has shown that the COP for the system is even higher than 18.5.

Heat pump where the flow temperature in the district heating system can be boosted from 72°C to 85°C if necessary.

CONSTITUENT PARTS OF THE AGREEMENT - RESPONSIBILITY FOR INVESTMENTS AND DESIGN CP Kelco is responsible for the investments and the design of the technical installations for utilizing the surplus heat right up to the "connection point" with VEKS - that is, for example, heat exchangers and heat pumps. The design concept must be presented to and approved of by VEKS. VEKS is responsible for the investments and the design of the technical installations from the "connection point" with CP Kelco and to the existing district heating network - that is, for example, district heating pumps, meters, and about 150 meters of district heating pipes in the ground.

But how, then, is the heat agreement - based on this plant concept - designed?

MAIN FRAMEWORK FOR THE AGREEMENT The two parties - CP Kelco and VEKS - are very different. CP Kelco is a 100 % commercial company, which must, necessarily, focus on the fact that free capital must be yielded interest in the best way possible. This means, as a starting point, a large focus on investments with a short payback period. In contrast, VEKS - as operator of infrastructure in the form of a district heating system - has a longer time horizon for its investments. In other words: VEKS works with more patient capital.

www.dbdh.dk

J O U R N A L N 0 . 1 / 2 0 1 9

Made with FlippingBook - Online magazine maker