Semantron 25 Summer 2025

Zetas and positive even integers

Simplify to get:

2𝜋 4 5!

𝜁(4) = 𝜁(2) 2 −

𝜋 4 36

𝜋 4 60

𝜁(4)=

𝜋 4 90

𝜁(4)=

Now what about 𝜁(6)? By equating coefficients of 𝑥 7 get:

1 7!

1 𝜋 6

1 1 2

1 2 2

1 3 2

1 2 2

1 3

1 4 2

1 1 2

1 3 2

1 4 2

1 1 2

1 2 2

1 4 2

=−

(

×

×

+

×

×

+

×

×

+

×

×

+⋯) [𝟑]

Again, let the contents in the bracket be 𝑀 , and expand 𝜁(2) 3 :

3

1 1 2

1 2 2

1 3 2

𝜁(2) 3 =(

+

+

+⋯)

2

2

1 1 6

1 2 6

1 3 6

1 2 2

1 2 2

1 3 2

1 3 2

+⋯+3(1 2 ×

+1 2 ×

=

+

+

+1×(

)

+1×(

)

+⋯)

1 1 2

1 2 2

1 3 2

1 2 2

1 3

1 4 2

1 1 2

1 3 2

1 4 2

1 1 2

1 2 2

1 4 2

+6(

×

×

+

×

×

+

×

×

+

×

×

+⋯)

2

2

= 𝜁(6) + 6𝑀 + 3(1 2 × 1 2 2

1 2 2

1 3 2

1 3 2

+1 2 ×

+1×(

)

+1×(

)

+⋯) [𝟒]

Let the contents of the last bracket be 𝑁 , and expand 𝜁(2)𝜁(4) :

1 1 2

1 2 2

1 3 2

1 1 4

1 2 4

1 3 4

𝜁(2)𝜁(4) = (

+

+

+⋯)(

+

+

+⋯)

2

2

1 1 6

1 2 6

1 3 6

1 2 2

1 2 2

1 3 2

1 3 2

+⋯+(1 2 ×

+1 2 ×

=

+

+

+1×(

)

+1×(

)

+⋯)

= 𝜁(6) +𝑁 [𝟓]

Substitute [𝟓] into [𝟒] to get:

𝜁(2) 3 = 𝜁(6) + 6𝑀 + 3(𝜁(2)𝜁(4) − 𝜁(6))

Simplify to get:

1 6

1 2

1 3

𝜁(2) 3 −

𝑀 =

𝜁(2)𝜁(4) +

𝜁(6) [𝟔]

Substitute [𝟔] into [𝟑] to get:

1 7!

1 𝜋 6

1 6

1 2

1 3

𝜁(2) 3 −

=−

(

𝜁(2)𝜁(4) +

𝜁(6))

Simplify and solve to get 𝜁(6)= 𝜋 6 945

110

Made with FlippingBook flipbook maker