PROCESSES RISK-BASED INSPECTION
RP 580 Risk-Based Inspection
Provides users with the basic minimum and recommended elements for developing, implementing, and maintaining a risk-based inspection (RBI) program. It also provides guidance to owner-users, operators, and designers of pressure-containing equipment for developing and implementing an inspection program. These guidelines include means for assessing an inspection program and its plan. The approach emphasizes safe and reliable operation through risk-prioritized inspection. A spectrum of complementary risk analysis approaches (qualitative through fully quantitative) can be considered as part of the inspection planning process. RBI guideline issues covered include an introduction to the concepts and principles of RBI for risk management and individual sections that describe the steps in applying these principles within the framework of the RBI process.
RP 581 Risk-Based Inspection Methodology
Provides quantitative procedures to establish an inspection program using risk- based methods for pressurized fixed equipment including pressure vessel, piping, tankage, pressure relief devices (PRDs), and heat exchanger tube bundles. RP 580 provides guidance for developing Risk-Based Inspection (RBI) programs on fixed equipment in refining, petrochemical, chemical process plants, and oil and gas production facilities. The intent is for RP 580 to introduce the principles and present minimum general guidelines for RBI, while this recommended practice provides quantitative calculation methods to determine an inspection plan. The calculation of risk outlined in RP 581 involves the determination of a probability of failure (POF) combined with the consequence of failure (COF). Failure is defined as a loss of containment from the pressure boundary resulting in leakage to the atmosphere or rupture of a pressurized component. Risk increases as damage accumulates during in-service operation as the risk tolerance or risk target is approached and an inspection is recommended of sufficient effectiveness to better quantify the damage state of the component. The inspection action itself does not reduce the risk; however, it does reduce uncertainty and therefore allows more accurate quantification of the damage present in the component.
14
Made with FlippingBook - PDF hosting