Processes 2023 , 11 , 809
17of 19
Funding: Financial support from the Texas A&M Energy Institute and the Artie McFerrin Department of Chemical Engineering is greatly acknowledged by the authors. Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy reasons. Conflicts of Interest: The authors declare no conflict of interest.
References 1. VDP-Facts about Paper 2022. Available online: https://papertoexport.com/paper-consumption-worldwide-from-2020-to-2030-2/ (accessed on 10 January 2023). 2. Tsai, W.H.; Lai, S.Y. Green production planning and control model with ABC under industry 4.0 for the paper industry. Sustainability 2018 , 10 , 2932. [CrossRef] 3. Pätäri, S.; Tuppura, A.; Toppinen, A.; Korhonen, J. Global sustainability megaforces in shaping the future of the European pulp and paper industry towards a bioeconomy. For. Policy Econ. 2016 , 66 , 38–46. [CrossRef] 4. Lawrence, A.; Karlsson, M.; Thollander, P. Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry. Energy 2018 , 153 , 825–835. [CrossRef] 5. Singh, A.K.; Bilal, M.; Iqbal, H.M.; Meyer, A.S.; Raj, A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Sci. Total Environ. 2021 , 777 , 145988. [CrossRef] [PubMed] 6. Choi, H.K.; Kwon, J.S.I. Modeling and control of cell wall thickness in batch delignification. Comput. Chem. Eng. 2019 , 128 , 512–523. [CrossRef] 7. Choi, H.K.; Kwon, J.S.I. Multiscale modeling and multiobjective control of wood fiber morphology in batch pulp digester. AIChE J. 2020 , 66 , e16972. [CrossRef] 8. Li, J.; Gellerstedt, G. On the structural significance of the kappa number measurement. Nord. Pulp Pap. Res. J. 1998 , 13 , 153–158. [CrossRef] 9. Hart, P.W.; Colson, G.W.; Antonsson, S.; Hjort, A. Impact of impregnation on high kappa number hardwood pulps. BioResources 2011 , 6 , 5139–5150. 10. Alves, A.; Santos, A.; da Silva Perez, D.; Rodrigues, J.; Pereira, H.; Simoes, R.; Schwanninger, M. NIR PLSR model selection for Kappa number prediction of maritime pine Kraft pulps. Wood Sci. Technol. 2007 , 41 , 491–499. [CrossRef] 11. Gurnagul, N.; Page, D.H.; Paice, M.G. The effect of cellulose degradation on the strength of wood pulp fibres. Nord. Pulp Pap. Res. J. 1992 , 7 , 152–154. [CrossRef] 12. Karak, T.; Bhagat, R.; Bhattacharyya, P. Municipal solid waste generation, composition, and management: The world scenario. Crit. Rev. Environ. Sci. Technol. 2012 , 42 , 1509–1630. [CrossRef] 13. Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and paper mill wastes: Utilizations and prospects for high value-added biomaterials. Bioresour. Bioprocess. 2021 , 8 , 1–22. [CrossRef] 14. Fang, Z.; Li, B.; Liu, Y.; Zhu, J.; Li, G.; Hou, G.; Zhou, J.; Qiu, X. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter 2020 , 2 , 1000–1014. [CrossRef] 15. De Silva, R.; Byrne, N. Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties. Carbohydr. Polym. 2017 , 174 , 89–94. [CrossRef] [PubMed] 16. Carvalho, M.; Ferreira, P.; Figueiredo, M. Cellulose depolymerisation and paper properties in E. globulus kraft pulps. Cellulose 2000 , 7 , 359–368. [CrossRef] 17. Rasi, M. Permeability properties of paper materials. In Research Report/Department of Physics ; University of Jyväskylä: Jyväskylä, Finland, 2013. 18. Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Dufresne, A.; Gandini, A. Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose–thermoset composites. J. Appl. Polym. Sci. 2005 , 98 , 974–984. [CrossRef] 19. Gustafson, R.R.; Sleicher, C.A.; McKean, W.T.; Finlayson, B.A. Theoretical model of the kraft pulping process. Ind. Eng. Chem. Process Des. Dev. 1983 , 22 , 87–96. [CrossRef] 20. Andersson, N.; Wilson, D.I.; Germgård, U. An improved kinetic model structure for softwood kraft cooking. Nord. Pulp Pap. Res. J. 2003 , 18 , 200–209. [CrossRef] 21. Christensen, T. A mathematical Model of the Kraft Pulping Process ; Purdue University: West Lafayette, IN, USA, 1982. 22. Bhartiya, S.; Dufour, P.; Doyle III, F.J. Fundamental thermal-hydraulic pulp digester model with grade transition. AIChE J. 2003 , 49 , 411–425. [CrossRef] 23. Choi, H.K.; Kwon, J.S.I. Multiscale modeling and control of Kappa number and porosity in a batch-type pulp digester. AIChE J. 2019 , 65 , e16589. [CrossRef] 24. Son, S.H.; Choi, H.K.; Kwon, J.S.I. Multiscale modeling and control of pulp digester under fiber-to-fiber heterogeneity. Comput. Chem. Eng. 2020 , 143 , 107117. [CrossRef] 25. Pahari, S.; Bhadriraju, B.; Akbulut, M.; Kwon, J.S.I. A slip-spring framework to study relaxation dynamics of entangled wormlike micelles with kinetic Monte Carlo algorithm. J. Colloid Interface Sci. 2021 , 600 , 550–560. [CrossRef] [PubMed]
Made with FlippingBook Digital Publishing Software