PAPERmaking! Vol9 Nr2 2023

Processes 2023 , 11 , 809

18of 19

26. Andersen, M.; Panosetti, C.; Reuter, K. A practical guide to surface kinetic Monte Carlo simulations. Front. Chem. 2019 , 7 , 202. [CrossRef] [PubMed] 27. Son, S.H.; Choi, H.K.; Kwon, J.S.I. Application of offset-free Koopman-based model predictive control to a batch pulp digester. AIChE J. 2021 , 67 , e17301. [CrossRef] 28. Son, S.H.; Choi, H.K.; Moon, J.; Kwon, J.S.I. Hybrid Koopman model predictive control of nonlinear systems using multiple EDMD models: An application to a batch pulp digester with feed fluctuation. Control Eng. Pract. 2022 , 118 , 104956. [CrossRef] 29. Dobbelaere, M.R.; Plehiers, P.P.; Van de Vijver, R.; Stevens, C.V.; Van Geem, K.M. Machine learning in chemical engineering: Strengths, weaknesses, opportunities, and threats. Engineering 2021 , 7 , 1201–1211. [CrossRef] 30. Venkatasubramanian, V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChEJ. 2018 , 65 , 466–478. [CrossRef] 31. Bhadriraju, B.; Narasingam, A.; Kwon, J.S.I. Machine learning-based adaptive model identification of systems: Application to a chemical process. Chem. Eng. Res. Des. 2019 , 152 , 372–383. [CrossRef] 32. Pahari, S.; Moon, J.; Akbulut, M.; Hwang, S.; Kwon, J.S.I. Estimation of microstructural properties of wormlike micelles via a multi-scale multi-recommendation batch bayesian optimization. Ind. Eng. Chem. Res. 2021 , 60 , 15669–15678. [CrossRef] 33. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019 , 31 , 1235–1270. [CrossRef] 34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997 , 9 , 1735–1780. [CrossRef] 35. Thompson, M.L.; Kramer, M.A. Modeling chemical processes using prior knowledge and neural networks. AIChE J. 1994 , 40 , 1328–1340. [CrossRef] 36. Prasad, V.; Bequette, B.W. Nonlinear system identification and model reduction using artificial neural networks. Comput. Chem. Eng. 2003 , 27 , 1741–1754. [CrossRef] 37. Jeon, B.K.; Kim, E.J. LSTM-based model predictive control for optimal temperature set-point planning. Sustainability 2021 , 13 , 894. [CrossRef] 38. Wu, Z.; Rincon, D.; Luo, J.; Christofides, P.D. Machine learning modeling and predictive control of nonlinear processes using noisy data. AIChE J. 2021 , 67 , e17164. [CrossRef] 39. Shah, P.; Sheriff, M.Z.; Bangi, M.S.F.; Kravaris, C.; Kwon, J.S.I.; Botre, C.; Hirota, J. Deep neural network-based hybrid modeling and experimental validation for an industry-scale fermentation process: Identification of time-varying dependencies among parameters. Chem. Eng. J. 2022 , 441 , 135643. [CrossRef] 40. Choi, H.K.; Kwon, J.S.I. Multiscale modeling and control of fiber length in pulp digester. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 4343–4348. 41. Jung, J.; Choi, H.K.; Son, S.H.; Kwon, J.S.I.; Lee, J.H. Multiscale modeling of fiber deformation: Application to a batch pulp digester for model predictive control of fiber strength. Comput. Chem. Eng. 2022 , 158 , 107640. [CrossRef] 42. Irle, M.A.; Barbu, M.C.; Reh, R.; Bergland, L.; Rowell, R.M. 10 Wood Composites. Handb. Wood Chem. Wood Compos. 2012 , 321–411 . [CrossRef] 43. Van Loon, L.; Glaus, M. Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories. J. Environ. Polym. Degrad. 1997 , 5 , 97–109. [CrossRef] 44. Pavasars, I.; Hagberg, J.; Borén, H.; Allard, B. Alkaline degradation of cellulose: Mechanisms and kinetics. J. Polym. Environ. 2003 , 11 , 39–47. [CrossRef] 45. Kim, D.; Kim, M.; Kim, W. Wafer edge yield prediction using a combined long short-term memory and feed-forward neural network model for semiconductor manufacturing. IEEE Access 2020 , 8 , 215125–215132. [CrossRef] 46. Kowsher, M.; Tahabilder, A.; Sanjid, M.Z.I.; Prottasha, N.J.; Uddin, M.S.; Hossain, M.A.; Jilani, M.A.K. LSTM-ANN & BiLSTM- ANN: Hybrid deep learning models for enhanced classification accuracy. Procedia Comput. Sci. 2021 , 193 , 131–140. 47. Makris, D.; Kaliakatsos-Papakostas, M.; Karydis, I.; Kermanidis, K.L. Combining LSTM and feed forward neural networks for conditional rhythm composition. In Proceedings of the International Conference on Engineering Applications of Neural Networks ; Springer: Athens, Greece, 2017; pp. 570–582. 48. Feng, C.; Chang, L.; Li, C.; Ding, T.; Mai, Z. Controller optimization approach using LSTM-based identification model for pumped-storage units. IEEE Access 2019 , 7 , 32714–32727. [CrossRef] 49. Schwedersky, B.B.; Flesch, R.C.; Dangui, H.A. Practical nonlinear model predictive control algorithm for long short-term memory networks. IFAC-PapersOnLine 2019 , 52 , 468–473. [CrossRef] 50. Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000 , 12 , 2451–2471. [CrossRef] [PubMed] 51. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016 , 28 , 2222–2232. [CrossRef] 52. Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005 , 18 , 602–610. [CrossRef] [PubMed] 53. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014 , arXiv:1412.6980. 54. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 2011 , 24 , 2546–2554.

Made with FlippingBook Digital Publishing Software