PAPERmaking! Vol9 Nr2 2023

Sustainability 2023 , 15 , 6915

15of 21

3. Deshwal, G.K.; Panjagari, N.R.; Alam, T. An overview of paper and paper based food packaging materials: Health safety and environmental concerns. J. Food Sci. Technol. 2019 , 56 , 4391–4403. [CrossRef] 4. Ozola, Z.U.; Vesere, R.; Kalnins, S.N.; Blumberga, D. Paper waste recycling. circular economy aspects. Rigas Teh. Univ. Zinat. Raksti 2019 , 23 , 260–273. 5. Asrat, T.H.; Bachheti, R.K.; Getachew, M.; Abate, L. Evaluation of pulp and paper making properties of Caesalpinia decapetela. Nord. Pulp Pap. Res. J. 2022 , 37 , 14–24. [CrossRef] 6. Ezeudu, O.B.; Agunwamba, J.C.; Ezeasor, I.C.; Madu, C.N. Sustainable production and consumption of paper and paper products in Nigeria: A review. Resources 2019 , 8 , 53. [CrossRef] 7. Izadi, A.; Hosseini, M.; Najafpour Darzi, G.; Nabi Bidhendi, G.; Pajoum Shariati, F. Treatment of paper-recycling wastewater by electrocoagulation using aluminum and iron electrodes. J. Environ. Health Sci. Eng. 2018 , 16 , 257–264. [CrossRef] 8. Sharma, P.; Iqbal, H.M.N.; Chandra, R. Evaluation of pollution parameters and toxic elements in wastewater of pulp and paper industries in India: A case study. Case Stud. Chem. Environ. Eng. 2022 , 5 , 100163. [CrossRef] 9. Rizaluddin, A.T. Review on renewable energy sources based on thermal conversion in the pulp and paper industry. In Proceedings of the SATREPS Conference, Bogor, Indonesia, 17 November 2020. 10. Sim ã o, L.; Hotza, D.; Raupp-Pereira, F.; Labrincha, J.; Montedo, O. Wastes from pulp and paper mills-a review of generation and recycling alternatives. Cer â mica 2018 , 64 , 443–453. [CrossRef] 11. Tait, P.W.; Brew, J.; Che, A.; Costanzo, A.; Danyluk, A.; Davis, M.; Khalaf, A.; McMahon, K.; Watson, A.; Rowcliff, K. The health impacts of waste incineration: A systematic review. Aust. N. Z. J. Public Health 2020 , 44 , 40–48. [CrossRef] 12. Abushammala, H.; Ghulam, S.T. Impact of Residents’ Demographics on Their Knowledge, Attitudes, and Practices towards Waste Management at the Household Level in the United Arab Emirates. Sustainability 2023 , 15 , 685. [CrossRef] 13. Dori, Y.J.; Tal, R.T. Formal and informal collaborative projects: Engaging in industry with environmental awareness. Sci. Educ. 2000 , 84 , 95–113. [CrossRef] 14. Pawar, K.; Rothkar, R.V. Forest conservation & environmental awareness. Procedia Earth Planet. Sci. 2015 , 11 , 212–215. 15. Miranda Carreño, R.; Blanco Su á rez, Á . Environmental awareness and paper recycling. Cellul. Chem. Technol. 2010 , 44 , 431–449. 16. Abushammala, H.; Mao, J. Waste Iron Filings to Improve the Mechanical and Electrical Properties of Glass Fiber-Reinforced Epoxy (GFRE) Composites. J. Compos. Sci. 2023 , 7 , 90. [CrossRef] 17. Souza, A.G.d.; Kano, F.S.; Bonvent, J.J.; Rosa, D.d.S. Cellulose nanostructures obtained from waste paper industry: A comparison of acid and mechanical isolation methods. Mater. Res. 2017 , 20 , 209–214. [CrossRef] 18. Cherubini, F.; Bargigli, S.; Ulgiati, S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy 2009 , 34 , 2116–2123. [CrossRef] 19. Dominczyk, A.; Krzystek, L.; Ledakowicz, S. Biodrying of organic municipal wastes and residues from the pulp and paper industry. Dry. Technol. 2014 , 32 , 1297–1303. [CrossRef] 20. Zhang, D.; Huang, G.; Xu, Y.; Gong, Q. Waste-to-energy in China: Key challenges and opportunities. Energies 2015 , 8 , 14182–14196. [CrossRef] 21. Finnveden, G.; Ekvall, T. Life-cycle assessment as a decision-support tool—The case of recycling versus incineration of paper. Resour. Conserv. Recycl. 1998 , 24 , 235–256. [CrossRef] 22. Rahman, M.O.; Hussain, A.; Basri, H. A critical review on waste paper sorting techniques. Int. J. Environ. Sci. Technol. 2014 , 11 , 551–564. [CrossRef] 23. Pivnenko, K.; Eriksson, E.; Astrup, T.F. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Manag. 2015 , 45 , 134–142. [CrossRef] 24. Kumar, V.; Pathak, P.; Bhardwaj, N.K. Waste paper: An underutilized but promising source for nanocellulose mining. Waste Manag. 2020 , 102 , 281–303. [CrossRef] 25. Shakir, A.A.; Naganathan, S.; Mustapha, K.N.B. Development of bricks from waste material: A review paper. Aust. J. Basic Appl. Sci. 2013 , 7 , 812–818. 26. Clark, T. Plant fibers in the paper industry. Econ. Bot. 1965 , 19 , 394–405. [CrossRef] 27. Heinze, T. Cellulose: Structure and Properties. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials ; Rojas, O.J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1–52. [CrossRef] 28. Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020 , 5 , 642–666. [CrossRef] 29. Demuner, I.F.; Gomes, F.J.B.; Gomes, J.S.; Coura, M.R.; Borges, F.P.; Carvalho, A.M.M.L.; Silva, C.M. Improving kraft pulp mill sustainability by lignosulfonates production from processes residues. J. Clean. Prod. 2021 , 317 , 128286. [CrossRef] 30. P é rez, J.; Muñoz-Dorado, J.; de la Rubia, T.; Mart í nez, J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. Int. Microbiol. 2002 , 5 , 53–63. [CrossRef] 31. Yang, X.; Berthold, F.; Berglund, L.A. Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency. Biomacromolecules 2018 , 19 , 3020–3029. [CrossRef] 32. Laftah, W.A.; Wan Abdul Rahman, W.A. Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: A review. J. Nat. Fibers 2016 , 13 , 85–102. [CrossRef] 33. Małachowska, E.; Dubowik, M.; Lipkiewicz, A.; Przybysz, K.; Przybysz, P. Analysis of cellulose pulp characteristics and processing parameters for efficient paper production. Sustainability 2020 , 12 , 7219. [CrossRef]

Made with FlippingBook Digital Publishing Software