PAPERmaking! Vol9 Nr2 2023

Sustainability 2023 , 15 , 6915

17of 21

64. El-Sayed, E.S.A.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Non-wood fibers as raw material for pulp and paper industry. Nord. Pulp Pap. Res. J. 2020 , 35 , 215–230. [CrossRef] 65. Suseno, N.; Adiarto, T.; Sifra, M.; Elvira, V. Utilization of rice straw and used paper for the recycle papermaking. IOP Conf. Ser. Mater. Sci. Eng. 2019 , 703 , 012044. [CrossRef] 66. Eugenio, M.E.; Ibarra, D.; Mart í n-Sampedro, R.; Espinosa, E.; Basc ó n, I.; Rodr í guez, A. Alternative raw materials for pulp and paper production in the concept of a lignocellulosic biorefinery. Cellulose 2019 , 12 , 78. 67. Tutus¸, A.; Kazaskerog˘lu, Y.; Çiçekler, M. Evaluation of tea wastes in usage pulp and paper production. BioResources 2015 , 10 , 5407–5416. [CrossRef] 68. Othman, S.A.; Mahazir, N.S. Production of Paper From Non-Wood: A Review. Int. J. Adv. Res. Eng. Innov. 2021 , 3 , 103–110. 69. Gemechu, E.D.; Butnar, I.; Gom à -Camps, J.; Pons, A.; Castells, F. A comparison of the GHG emissions caused by manufacturing tissue paper from virgin pulp or recycled waste paper. Int. J. Life Cycle Assess. 2013 , 18 , 1618–1628. [CrossRef] 70. Berglund, C.; Söderholm, P. An Econometric Analysis of Global Waste Paper Recovery and Utilization. Environ. Resour. Econ. 2003 , 26 , 429–456. [CrossRef] 71. Sevign é -Itoiz, E.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X. Methodology of supporting decision-making of waste management with material flow analysis (MFA) and consequential life cycle assessment (CLCA): Case study of waste paper recycling. J. Clean. Prod. 2015 , 105 , 253–262. [CrossRef] 72. Misman, M.; Alwi, S.W.; Manan, Z.A. State-of-the-art for paper recycling. In Proceedings of the International Conference on Science and Technology (ICSTIE), George Town, Malaysia, 17–18 September 2014; pp. 1–5. 73. Vu, H.H.T.; Lai, T.Q.; Ahn, J.W. Appropriate technology for the paper recycling: A new paradigm. J. Energy Eng. 2018 , 27 , 81–88. 74. Faul, A.M. Quality requirements in graphic paper recycling. Cellul. Chem. Technol. 2010 , 44 , 451. 75. Ervasti, I.; Miranda, R.; Kauranen, I. A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions. Waste Manag. 2016 , 48 , 64–71. [CrossRef] 76. Dumea, N.; Lado, Z.; Poppel, E. Differences in the recycling behaviour of paper printed by various techniques. Cellul. Chem. Technol. 2009 , 43 , 57. 77. Fricker, A.; Thompson, R.; Manning, A. Novel solutions to new problems in paper deinking. Pigment. Resin Technol. 2007 , 36 , 141–152. [CrossRef] 78. Hubbe, M.A.; Venditti, R.A.; Rojas, O.J. What happens to cellulosic fibers during papermaking and recycling? A review. BioResources 2007 , 2 , 739–788. 79. Jin, H.; Kose, R.; Akada, N.; Okayama, T. Relationship between wettability of pulp fibers and tensile strength of paper during recycling. Sci. Rep. 2022 , 12 , 1560. [CrossRef] 80. Nakamura, M. Development of The Dry Paper Recycling Technology which Realizes a New Ofice Papermaking System. Jpn. Tappi J. 2018 , 72 , 786–792. [CrossRef] 81. Ono, Y.; Hayashi, M.; Yokoyama, K.; Okamura, T.; Itsubo, N. Environmental assessment of innovative paper recycling technology using product lifecycle perspectives. Resources 2020 , 9 , 23. [CrossRef] 82. Chang, J.C.; Beach, R.H.; Olivetti, E.A. Consequential effects of increased use of recycled fiber in the United States pulp and paper industry. J. Clean. Prod. 2019 , 241 , 118133. [CrossRef] 83. Buist, H.; van Harmelen, T.; van den Berg, C.; Leeman, W.; Meima, M.; Krul, L. Evaluation of measures to mitigate mineral oil migration from recycled paper in food packaging. Packag. Technol. Sci. 2020 , 33 , 531–546. [CrossRef] 84. Peretz, R.; Mamane, H.; Wissotzky, E.; Sterenzon, E.; Gerchman, Y. Making Cardboard and Paper Recycling More Sustainable: Recycled Paper Sludge For Energy Production and Water-Treatment Applications. Waste Biomass Valoriz. 2021 , 12 , 1599–1608. [CrossRef] 85. Dess ì , P.; Porca, E.; Lakaniemi, A.-M.; Collins, G.; Lens, P.N. Temperature control as key factor for optimal biohydrogen production from thermomechanical pulping wastewater. Biochem. Eng. J. 2018 , 137 , 214–221. [CrossRef] 86. Kalair, A.R.; Seyedmahmoudian, M.; Stojcevski, A.; Abas, N.; Khan, N. Waste to energy conversion for a sustainable future. Heliyon 2021 , 7 , e08155. [CrossRef] 87. Saeed, O.F.; Muallah, S. Treatment of Waste Paper Using Ultrasound and Sodium Hydroxide for Bioethanol Production. J. Biotechnol. Res. Cent. 2018 , 12 , 108–114. [CrossRef] 88. Darmawan, M.A.; Hermawan, Y.A.; Samsuri, M.; Gozan, M. Conversion of paper waste to bioethanol using selected enzyme combination (cellulase and cellobiase) through simultaneous saccharification and fermentation. AIP Conf. Proc. 2019 , 2085 , 020018. 89. Branco, R.H.; Serafim, L.S.; Xavier, A.M. Second generation bioethanol production: On the use of pulp and paper industry wastes as feedstock. Fermentation 2018 , 5 , 4. [CrossRef] 90. Duncan, S.M.; Alkasrawi, M.; Gurram, R.; Almomani, F.; Wiberley-Bradford, A.E.; Singsaas, E. Paper mill sludge as a source of sugars for use in the production of bioethanol and isoprene. Energies 2020 , 13 , 4662. [CrossRef] 91. Wan, X.; Liu, J.; Zhang, Y.; Tian, D.; Liu, Y.; Zhao, L.; Huang, M.; Hu, J.; Shen, F. Conversion of agricultural and forestry biomass into bioethanol, water-soluble polysaccharides, and lignin nanoparticles by an integrated phosphoric acid plus hydrogen peroxide process. Ind. Crops Prod. 2023 , 191 , 115969. [CrossRef] 92. Abushammala, H.; Hashaikeh, R. Enzymatic hydrolysis of cellulose and the use of TiO2 nanoparticles to open up the cellulose structure. Biomass Bioenergy 2011 , 35 , 3970–3975. [CrossRef]

Made with FlippingBook Digital Publishing Software