Sustainability 2023 , 15 , 6915
19of 21
121. Wang, L.; Templer, R.; Murphy, R.J. A Life Cycle Assessment (LCA) comparison of three management options for waste papers: Bioethanol production, recycling and incineration with energy recovery. Bioresour. Technol. 2012 , 120 , 89–98. [CrossRef] [PubMed] 122. Tang, P.; Florea, M.; Spiesz, P.; Brouwers, H. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr. Build. Mater. 2015 , 83 , 77–94. [CrossRef] 123. Luo, H.; Cheng, Y.; He, D.; Yang, E.-H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019 , 668 , 90–103. [CrossRef] [PubMed] 124. Peretz, R.; Sterenzon, E.; Gerchman, Y.; Vadivel, V.K.; Luxbacher, T.; Mamane, H. Nanocellulose production from recycled paper mill sludge using ozonation pretreatment followed by recyclable maleic acid hydrolysis. Carbohydr. Polym. 2019 , 216 , 343–351. [CrossRef] [PubMed] 125. Gibril, M.E.; Lekha, P.; Andrew, J.; Sithole, B.; Tesfaye, T.; Ramjugernath, D. Beneficiation of pulp and paper mill sludge: Production and characterisation of functionalised crystalline nanocellulose. Clean Technol. Environ. Policy 2018 , 20 , 1835–1845. [CrossRef] 126. Cheng, M.; Qin, Z.; Chen, Y.; Hu, S.; Ren, Z.; Zhu, M. Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustain. Chem. Eng. 2017 , 5 , 4656–4664. [CrossRef] 127. Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016 , 93 , 2–25. [CrossRef] 128. Yi, T.; Zhao, H.; Mo, Q.; Pan, D.; Liu, Y.; Huang, L.; Xu, H.; Hu, B.; Song, H. From cellulose to cellulose nanofibrils—A comprehensive review of the preparation and modification of cellulose nanofibrils. Materials 2020 , 13 , 5062. [CrossRef] 129. Michelin, M.; Gomes, D.G.; Roman í , A.; Polizeli, M.d.L.T.; Teixeira, J.A. Nanocellulose production: Exploring the enzymatic route and residues of pulp and paper industry. Molecules 2020 , 25 , 3411. [CrossRef] [PubMed] 130. Yeganeh, F.; Behrooz, R.; Rahimi, M. The effect of Sulfuric acid and Maleic acid on characteristics of nano-cellulose produced from waste office paper. Int. J. Nano Dimens. 2017 , 8 , 206–215. 131. Maslennikov, A.; Peretz, R.; Vadivel, V.K.; Mamane, H. Recycled Paper Sludge (RPS)-Derived Nanocellulose: Production, Detection and Water Treatment Application. Appl. Sci. 2022 , 12 , 3077. [CrossRef] 132. Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Habibi, Y.; Adhikari, B. Surface modifications of nanocellulose: From synthesis to high-performance nanocomposites. Prog. Polym. Sci. 2021 , 119 , 101418. [CrossRef] 133. Abushammala, H. A Simple Method for the Quantification of Free Isocyanates on the Surface of Cellulose Nanocrystals upon Carbamation using Toluene Diisocyanate. Surfaces 2019 , 2 , 32. [CrossRef] 134. Kumar, R.; Rai, B.; Gahlyan, S.; Kumar, G. A comprehensive review on production, surface modification and characterization of nanocellulose derived from biomass and its commercial applications. Express Polym. Lett. 2021 , 15 , 104–120. [CrossRef] 135. Abushammala, H. Process for Preparing Individual Cellulose Nanocrystals, and Cellulose Nanocrystals and Use Thereof. U.S. Patent 20140083416A1, 27 March 2014. 136. Jung, Y.H.; Chang, T.-H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V.W.; Mi, H.; Kim, M.; Cho, S.J.; Park, D.-W. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 2015 , 6 , 7170. [CrossRef] 137. Abushammala, H.; Mao, J. Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics. Nanomaterials 2023 , 13 , 782. [CrossRef] 138. Sabo, R.; Yermakov, A.; Law, C.T.; Elhajjar, R. Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review. J. Renew. Mater. 2016 , 4 , 297–312. [CrossRef] 139. Norfarhana, A.; Ilyas, R.; Ngadi, N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydrate Polymers 2022 , 291 , 119563. [CrossRef] 140. Abushammala, H.; Hashaikeh, R.; Cooney, C. Microcrystalline cellulose powder tableting via networked cellulose-based gel material. Powder Technol. 2012 , 217 , 16–20. [CrossRef] 141. Lee, S.-H.; Kim, H.-J.; Kim, J.-C. Nanocellulose applications for drug delivery: A review. J. For. Environ. Sci. 2019 , 35 , 141–149. 142. Zaki, A.S.C.; Yusoff, N.A.; Rohaizad, N.M.; Sohaimi, K.; Mohamed, A.; Salleh, N.H.M.; Termizi, S. Isolation and characterization of nanocellulose structure from waste newspaper. J. Adv. Res. Eng. Knowl. 2018 , 5 , 27–34. 143. Luo, H.; Cha, R.; Li, J.; Hao, W.; Zhang, Y.; Zhou, F. Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr. Polym. 2019 , 224 , 115144. [CrossRef] 144. Abushammala, H.; Mao, J. Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate). Crystals 2020 , 10 , 196. [CrossRef] 145. Azeredo, H.M. Bacterial cellulose for edible films and coatings. In Proceedings of the 4th International Symposium on Bacterial Nanocellulose, Porto, Portugal, 3–4 October 2019. 146. Fürtauer, S.; Hassan, M.; Elsherbiny, A.; Gabal, S.A.; Mehanny, S.; Abushammala, H. Current Status of Cellulosic and Nanocellu- losic Materials for Oil Spill Cleanup. Polymers 2021 , 13 , 2739. [CrossRef] 147. Ferreira, F.V.; Pinheiro, I.F.; de Souza, S.F.; Mei, L.H.; Lona, L.M. Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: A short review. J. Compos. Sci. 2019 , 3 , 51. [CrossRef] 148. Noor, S.; Anuar, A.; Tamunaidu, P.; Goto, M.; Shameli, K.; Ab Halim, M. Nanocellulose production from natural and recyclable sources: A review. IOP Conf. Ser. Earth Environ. Sci. 2020 , 479 , 012027. [CrossRef]
Made with FlippingBook Digital Publishing Software