8OWUDVRQLFV6RQRFKHPLVWU\
J. Kosel, et al.
bacteria from cardboard and paper with real-time PCR, J. Ind. Microbiol. Biotechnol. 31 (2004) 161 – 169, https://doi.org/10.1007/s10295-004-0125-x. [35] ISO, ISO 15874-3:2003 - Plastics piping systems for hot and cold water installations – Polypropylene (PP) – Part 3: Fittings, (2003). [36] M. Zupanc, T. Kosjek, M. Petkov š ek, M. Dular, B. Kompare, B. Š irok, Ž . Bla ž eka, E. Heath, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment, Ultrason. Sonochem. 20 (2013) 1104 – 1112, https://doi.org/10.1016/j.ultsonch.2012.12.003. [37] ES ISO 6611, Milk and milk products - Enumeration of colony-forming units of yeasts and/or moulds - Colony-count technique at 25 °C, (2012). [38] R. Maier, Bacterial Growth, in: R. Maier, I. Pepper, C. Gerba (Eds.), Environ. Microbiol. 397th ed., Academic press, 2009, pp. 37 – 40. [39] DIN 38409-2, German standard methods for the examination of water, waste water and sludge; parameters characterizing e ff ects and substances (group H); determi- nation of fi lterable matter and the residue on ignition (H 2)9-2, (1980). [40] SIST ISO 11923, Water quality - Determination of suspended solids by fi ltration through glass- fi bre fi lters, 020654 (1998). [41] ISO 7887, Water quality – Examination and determination of colour, (1996). [42] A. Š arc, J. Kosel, D. Stopar, M. Oder, M. Dular, Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation, Ultrason. Sonochem. 42 (2018), https://doi.org/10.1016/j.ultsonch.2017.11.004. [43] S. Arrojo, Y. Benito, A. Martínez Tarifa, A parametrical study of disinfection with hydrodynamic cavitation, Ultrason. Sonochem. 15 (2008) 903 – 908, https://doi. org/10.1016/j.ultsonch.2007.11.001. [44] J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report), Pure Appl. Chem. 73 (2001) 627 – 637, https://doi.org/10.1351/pac200173040627. [45] L.B. Leverett, J.D. Hellums, C.P. Alfrey, E.C. Lynch, Red Blood Cell Damage by Shear Stress, Biophys. J. 12 (1972) 257 – 273, https://doi.org/10.1016/S0006- 3495(72)86085-5. [46] M. Kolari, Paper machine microbiology, in: Handb. Papermak. Chem. Chapt 6, Finnish Paper Engineers ’ Association, Helsinki, 2007: pp. 181 – 198. [47] M. Badve, P. Gogate, A. Pandit, L. Csoka, Hydrodynamic cavitation as a novel ap- proach for wastewater treatment in wood fi nishing industry, Sep. Purif. Technol. 106 (2013) 15 – 21, https://doi.org/10.1016/j.seppur.2012.12.029. [48] M. Topaz, V. Shuster, E.I. Assia, D. Meyerstein, N. Meyerstein, D. Mazor, A. Gedanken, Acoustic cavitation in phacoemulsi fi cation and the role of anti- oxidants, Ultrasound Med. Biol. 31 (2005) 1123 – 1129, https://doi.org/10.1016/J. ULTRASMEDBIO.2005.02.016. [49] N.P. Cheremisino ff , Handbook of Solid Waste Management and Waste Minimization Technologies, Butterworth-Heinemann, 2003. [50] Global Advantech Limited, Cavitation Stripping Gases from Liquids and Oxygenation and Biological Control, Technol. Data Sheet TDS806. (2012). www. globaladvantech.com. [51] J. Poyato, J.L. Pérez-Rodríguez, V. Ramírez-Valle, A. Lerf, F.E. Wagner, Sonication induced redox reactions of the Ojén (Andalucía, Spain) vermiculite, Ultrason. Sonochem. 16 (2009) 570 – 576, https://doi.org/10.1016/J.ULTSONCH.2008.12. 009. [52] Č . Novotný, K. Svobodová, O. Benada, O. Kofro ň ová, A. Heissenberger, W. Fuchs, Potential of combined fungal and bacterial treatment for color removal in textile wastewater, Bioresour. Technol. 102 (2011) 879 – 888, https://doi.org/10.1016/J. BIORTECH.2010.09.014. [53] F. Çiner, Ö. Gökku ş , Treatability of dye solutions containing disperse dyes by fenton and fenton-solar light oxidation processes, Clean - Soil, Air, Water. 41 (2013) 80 – 85, https://doi.org/10.1002/clen.201000500. [54] J. Lorimer, T. Mason, M. Plattes, S. Phull, Dye e ffl uent decolourisation using ul- trasonically assisted electro-oxidation, Ultrason. Sonochem. 7 (2000) 237 – 242, https://doi.org/10.1016/S1350-4177(99)00045-0. [55] M. Beeby, J.C. Gumbart, B. Roux, G.J. Jensen, Architecture and assembly of the Gram-positive cell wall, Mol. Microbiol. 88 (2013) 664 – 672, https://doi.org/10. 1111/mmi.12203. [56] J.J. Thwaites, U.C. Surana, Mechanical properties of Bacillus subtilis cell walls: E ff ects of removing residual culture medium, J. Bacteriol. 173 (1991) 197 – 203, https://doi.org/10.1128/jb.173.1.197-203.1991. [57] R.D. Turner, A.F. Hurd, A. Cadby, J.K. Hobbs, S.J. Foster, Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture, Nat. Commun. 4 (1) (2013), https://doi.org/10.1038/ncomms2503. [58] B. Glauner, J.V. Höltje, U. Schwarz, The composition of the murein of Escherichia coli, J. Biol. Chem. 263 (1988) 10088 – 10095. [59] Y. Deng, M. Sun, J.W. Shaevitz, Direct measurement of cell wall stress sti ff eningand turgor pressure in live bacterial cells, Phys. Rev. Lett. 107 (2011) 7 – 10, https://doi. org/10.1103/PhysRevLett. 107.158101. [60] M. Farzaneh-Gord, A. Vazifedoost, A.B. Khoshnevis, Numerical study of fl ow in a rotor-stator system with inward through fl ow, Arch. Mech. 62 (2010) 195 – 214, https://doi.org/10.24423/AOM.326.
https://doi.org/10.1016/S1350-4177(01)00081-5. [11] N.S.M. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan, M. Ashokkumar, Physical and chemical e ff ects of acoustic cavitation in selected ultrasonic cleaning applications, Ultrason. Sonochem. 29 (2016) 568 – 576, https://doi.org/10.1016/J. ULTSONCH.2015.06.013. [12] N. Vyas, K. Manmi, Q. Wang, A.J. Jadhav, M. Barigou, R.L. Sammons, S.A. Kuehne, A.D. Walmsley, Which parameters a ff ect bio fi lm removal with acoustic cavitation? A review, Ultrasound Med. Biol. 45 (2019) 1044 – 1055, https://doi.org/10.1016/J. ULTRASMEDBIO.2019.01.002. [13] X. Li, T. Zhu, K. Zhang, L. Lv, T. Chai, Y. Shen, Y. Wang, M. You, Y. Xie, E ff ect of the sequence ultrasonic operation on anaerobic degradation of sewage sludge, Int. Biodeterior. Biodegradation. 112 (2016) 66 – 71, https://doi.org/10.1016/J.IBIOD. 2016.05.006. [14] K.S. Suslick, M.M. Mdleleni, J.T. Ries, Chemistry induced by hydrodynamic cavi- tation, J. Am. Chem. Soc. 119 (1997) 9303 – 9304, https://doi.org/10.1021/ ja972171i. [15] K.R. Morison, C.A. Hutchinson, Limitations of the Weissler reaction as a model reaction for measuring the e ffi ciency of hydrodynamic cavitation, Ultrason. Sonochem. 16 (2009) 176 – 183, https://doi.org/10.1016/j.ultsonch.2008.07.001. [16] N. Arul Dhas, A. Gedanken, Sonochemical synthesis of molybdenum oxide − and molybdenum carbide − silica nanocomposites, Chem. Mater. 9 (12) (1997) 3144 – 3154, https://doi.org/10.1021/cm9704488. [17] S. Drakopoulou, S. Terzakis, M.S. Fountoulakis, D. Mantzavinos, T. Manios, Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater, Ultrason. Sonochem. 16 (2009) 629 – 634, https://doi.org/10.1016/j.ultsonch.2008.11.011. [18] J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, Z. Zhang, Sonochemical formation of single-crystalline gold nanobelts, Angew. Chemie Int. Ed. 45 (2006) 1116 – 1119, https://doi.org/10.1002/anie.200503762. [19] C.A. Lopes, V. Jofre, M.P. Sangorrin, Spoilage yeasts in Patagonian winemaking: molecular and physiological features of Pichia guilliermondii indigenous isolates, Rev. Argentina Microbiol. 41 (2009) 177 – 184 http://www.scielo.org.ar/scie- lo.php?script=sci_arttext&pid=S0325-75412009000300010&nrm=iso. [20] N.S.M. Yusof, M. Ashokkumar, Ultrasound-induced formation of high and low viscoelastic nanostructures of micelles, Soft Matter. 9 (2013) 1997, https://doi.org/ 10.1039/c2sm27423j. [21] P.S. Kumar, A.B. Pandit, Modeling Hydrodynamic Cavitation, Chem. Eng. Technol. 22 (1999) 1017 – 1027, https://doi.org/10.1002/(SICI)1521-4125(199912) 22:12<1017::AID-CEAT1017>3.0.CO;2-L. [22] A.G. Chakinala, P.R. Gogate, R. Chand, D.H. Bremner, R. Molina, A.E. Burgess, Intensi fi cation of oxidation capacity using chloroalkanes as additives in hydro- dynamic and acoustic cavitation reactors, Ultrason. Sonochem. 15 (2008) 164 – 170, https://doi.org/10.1016/j.ultsonch.2007.02.008. [23] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res. 8 (2004) 501 – 551, https://doi.org/10.1016/S1093-0191(03)00032-7. [24] S. Arrojo, Y. Benito, A theoretical study of hydrodynamic cavitation, Ultrason. Sonochem. 15 (2008) 203 – 211, https://doi.org/10.1016/j.ultsonch.2007.03.007. [25] J.-P. Franc, Physics and Control of Cavitation, (2006). [26] C. von Ei ff , J. Overbeck, G. Haupt, M. Herrmann, S. Winckler, K.D. Richter, G. Peters, H.U. Spiegel, Bactericidal e ff ect of extracorporeal shock waves on Staphylococcus aureus, J. Med. Microbiol. 49 (2000) 709 – 712, https://doi.org/10. 1099/0022-1317-49-8-709. [27] P. Riesz, T. Kondo, Free radical formation induced by ultrasound and its biological implications, Free Radic. Biol. Med. 13 (1992) 247 – 270. [28] A. Š arc, M. Oder, M. Dular, Can rapid pressure decrease induced by supercavitation e ffi ciently eradicate Legionella pneumophila bacteria? Desalin. Water Treat. 57 (2016) 2184 – 2194, https://doi.org/10.1080/19443994.2014.979240. [29] R.A. Gottlieb, S. Adachi, Nitrogen cavitation for cell disruption to obtain mi- tochondria from cultured cells, Methods Enzymol. 322 (2000) 213 – 221 http:// www.ncbi.nlm.nih.gov/pubmed/10914019 (accessed July 26, 2017). [30] M. Petkov š ek, M. Mlakar, M. Levstek, M. Stra ž ar, B. Š irok, M. Dular, A novel ro- tation generator of hydrodynamic cavitation for waste-activated sludge disin- tegration, Ultrason. Sonochem. 26 (2015) 408 – 414, https://doi.org/10.1016/j. ultsonch.2015.01.006. [31] E.J. Hayhurst, L. Kailas, J.K. Hobbs, S.J. Foster, Cell wall peptidoglycan architecture in Bacillus subtilis, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 14603 – 14608, https:// doi.org/10.1073/pnas.0804138105. [32] M. Rättö, M. Siika-aho, J. Buchert, A. Valkeajävi, L. Viikari, Enzymatic hydrolosis of isolated and fi bre-bound galactoglucomannans from pine-wood and pine kraft pulp, Appl. Microbiol. Biotechnol. 40 (1993) 449 – 454, https://doi.org/10.1007/ BF00170409. [33] O.M. Väisänen, A. Weber, A. Bennasar, F.A. Rainey, H.J. Busse, M.S. Salkinoja- Salonen, Microbial communities of printing paper machines, J. Appl. Microbiol. 84 (1998) 1069 – 1084. [34] O. Priha, K. Hallamaa, M. Saarela, L. Raaska, Detection of Bacillus cereus group
Made with FlippingBook Ebook Creator