Energies 2021 , 14 , 1095
13of 14
Acknowledgments: Special thanks to the FEMAT company (www.fematsystems.pl) for the financial support of this research project. The authors also thank AQUILA VPK Wrzes´nia for providing samples of corrugated cardboard for the study. Conflicts of Interest: The authors declare no conflict of interest.
References 1. Leminena, V.; Tanninena, P.; Pesonena, A.; Varis, J. Effect of mechanical perforation on the press-forming process of paperboard. Procedia Manuf. 2019 , 38 , 1402–1408. [CrossRef] 2. Sohrabpour, V.; Hellström, D. Models and software for corrugated board and box design. In Proceedings of the 18th International Conference on Engineering Design (ICED 11), Copenhagen, Denmark, 15–18 October 2011. 3. McKee, R.C.; Gander, J.W.; Wachuta, J.R. Compression strength formula for corrugated boxes. Paperboard Packag. 1963 , 48 , 149–159. 4. Kellicutt, K.; Landt, E. Development of design data for corrugated fiberboard shipping containers. Tappi J. 1952 , 35 , 398–402. 5. Maltenfort, G. Compression strength of corrugated containers. Fibre Contain. 1956 , 41 , 106–121. 6. Allerby, I.M.; Laing, G.N.; Cardwell, R.D. Compressive strength—From components to corrugated containers. Appita Conf. Notes 1985 , 1–11. 7. Schrampfer, K.E.; Whitsitt, W.J.; Baum, G.A. Combined Board Edge Crush (ECT) Technology ; Institute of Paper Chemistry: Appleton, WI, USA, 1987. 8. Batelka, J.J.; Smith, C.N. Package Compression Model ; Institute of Paper Science and Technology: Atlanta, GA, USA, 1993. 9. Urbanik, T.J.; Frank, B. Box compression analysis of world-wide data spanning 46 years. Wood Fiber Sci. 2006 , 38 , 399–416. 10. Avil é s, F.; Carlsson, L.A.; May-Pat, A. A shear-corrected formulation of the sandwich twist specimen. Exp. Mech. 2012 , 52 , 17–23. [CrossRef] 11. Garbowski, T.; Gajewski, T.; Grabski, J.K. The role of buckling in the estimation of compressive strength of corrugated cardboard boxes. Materials 2020 , 13 , 4578. [CrossRef] [PubMed] 12. Garbowski, T.; Gajewski, T.; Grabski, J.K. Estimation of the compressive strength of corrugated cardboard boxes with various openings. Energies 2021 , 14 , 155. [CrossRef] 13. Frank, B. Corrugated box compression—A literature survey. Packag. Technol. Sci. 2014 , 27 , 105–128. [CrossRef] 14. Stott, R.A. Compression and stacking strength of corrugated fibreboard containers. Appita J. 2017 , 70 , 76–82. 15. Junli, W.; Quancheng, Z. Effect of moisture content of corrugated box on mechanical properties. J. Lanzhou Jiaotong Univ. 2006 , 25 , 134–136. 16. Archaviboonyobul, T.; Chaveesuk, R.; Singh, J.; Jinkarn, T. An analysis of the influence of hand hole and ventilation hole design on compressive strength of corrugated fiberboard boxes by an artificial neural network model. Packag. Technol. Sci. 2020 , 33 , 171–181. [CrossRef] 17. Zhang, Y.-L.; Chen, J.; Wu, Y.; Sun, J. Analysis of hazard factors of the use of corrugated carton in packaging low-temperature yogurt during logistics. Procedia Environ. Sci. 2011 , 10 , 968–973. [CrossRef] 18. Nordstrand, T. Basic Testing and Strength Design of Corrugated Board and Containers. Ph.D. Thesis, Lund University, Lund, Sweden, 2003. 19. Nordstrand, T.; Carlsson, L. Evaluation of transverse shear stiffness of structural core sandwich plates. Comp. Struct. 1997 , 37 , 145–153. [CrossRef] 20. Garbowski, T.; Gajewski, T.; Grabski, J.K. Role of transverse shear modulus in the performance of corrugated materials. Materials 2020 , 13 , 3791. [CrossRef] [PubMed] 21. Garbowski, T.; Gajewski, T.; Grabski, J.K. Torsional and transversal stiffness of orthotropic sandwich panels. Materials 2020 , 13 , 5016. [CrossRef] 22. Urbanik, T.J.; Saliklis, E.P. Finite element corroboration of buckling phenomena observed in corrugated boxes. Wood Fiber Sci. 2003 , 35 , 322–333. 23. Garbowski, T.; Jarmuszczak, M. Homogenization of corrugated paperboard. Part 1. Analytical homogenization. Pol. Pap. Rev. 2014 , 70 , 345–349. (In Polish) 24. Garbowski, T.; Jarmuszczak, M. Homogenization of corrugated paperboard. Part 2. Numerical homogenization. Pol. Pap. Rev. 2014 , 70 , 390–394. (In Polish) 25. Marek, A.; Garbowski, T. Homogenization of sandwich panels. Comput. Assist. Methods Eng. Sci. 2015 , 22 , 39–50. 26. Garbowski, T.; Marek, A. Homogenization of corrugated boards through inverse analysis. In Proceedings of the 1st International Conference on Engineering and Applied Sciences Optimization, Kos Island, Greece, 4–6 June 2014; pp. 1751–1766. 27. Hohe, J. A direct homogenization approach for determination of the stiffness matrix for microheterogeneous plates with application to sandwich panels. Compos. Part B 2003 , 34 , 615–626. [CrossRef] 28. Buannic, N.; Cartraud, P.; Quesnel, T. Homogenization of corrugated core sandwich panels. Comp. Struct. 2003 , 59 , 299–312. [CrossRef] 29. Biancolini, M.E. Evaluation of equivalent stiffness properties of corrugated board. Comp. Struct. 2005 , 69 , 322–328. [CrossRef] 30. Abb è s, B.; Guo, Y.Q. Analytic homogenization for torsion of orthotropic sandwich plates: Application. Comp. Struct. 2010 , 92 , 699–706. [CrossRef]
Made with FlippingBook Online newsletter maker