Cellulose (2021) 28:5775–5791
5791
15(3):371–392. https://doi.org/10.1007/s10570-007-9189- x Fang Z, Li B, Liu Y, Zhu J, Li G, Hou G, Zhou J, Qiu X (2020) Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter 2(4):1000–1014. https://doi.org/10.1016/j.matt.2020.01.016 He J, Batchelor WJ, Johnston RE (2003) The behavior of fibers in wet pressing. Tappi J 2:27–31 Hirn U, Schennach R (2015) Comprehensive analysis of indi- vidual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Sci Rep 5(1):10503. https://doi.org/10. 1038/srep10503 Hubbe MA (2006) Bonding between cellulosic fibers in the absence and presence of dry-strength agents–A review. BioResources 1(2):281–318 Janko M, Jocher M, Boehm A, Babel L, Bump S, Biesalski M, Meckel T, Stark RW (2015) Cross-linking cellulosic fibers with photoreactive polymers: visualization with confocal Raman and fluorescence microscopy. Biomacromol 16(7):2179–2187. https://doi.org/10.1021/acs.biomac. 5b00565 Jocher M, Gattermayer M, Kleebe H-J, Kleemann S, Biesalski M (2015) Enhancing the wet strength of lignocellulosic fibrous networks using photo-crosslinkable polymers. Cellulose 22(1):581–591. https://doi.org/10.1007/s10570- 014-0477-y Karppinen T, Kassamakov I, Hæggstro¨m E, Stor-Pellinen J (2004) Measuring paper wetting processes with laser transmission. Meas Sci Technol 15(7):1223–1229. https:// doi.org/10.1088/0957-0233/15/7/001 Ko¨rner M, Prucker O, Ru¨he J (2016) Kinetics of the generation of surface-attached polymer networks through C. H-Insertion React Macromol 49(7):2438–2447. https://doi. org/10.1021/acs.macromol.5b02734 Kolar J, Strlic M, Pentzien S, Kautek W (2000) Near-UV, vis- ible and IR pulsed laser light interaction with cellulose. Appl Phys A 71(1):87–90. https://doi.org/10.1007/ s003390000491 Lide DR (2004) CRC handbook of chemistry and physics, 85th edn. CRC Press Lindner M (2018) Factors affecting the hygroexpansion of paper. J Mater Sci 53(1):1–26. https://doi.org/10.1007/ s10853-017-1358-1 Lindstro¨m T, Fellers C, Ankerfors M, Nordmark GG (2016) On the nature of joint strength of paper—Effect of dry strength agents—Revisiting the Page equation. Nord Pulp Pap Res J 31(3):459–468. https://doi.org/10.3183/npprj-2016-31-03- p459-468 Lindstro¨m T, Wa˚gberg L, Larsson T (2005) On the nature of joint strength in paper—a review of dry and wet strength resins used in paper manufacturing. In: Proceedings of 13th fundamental research symposium. Cambridge, Surrey, UK, pp 457–562 Luner P, Zhou YJ (1993) Wet reinforcing of paper and board by novel crosslinking chemicals. In: Products of papermaking. Trans. of the X Fund. Res. Symp., Oxford, pp 1045–1072
Mangiante G, Alcouffe P, Gaborieau M, Zeno E, Petit-Conil M, Bernard J, Charlot A, Fleury E (2018) Biohybrid cellulose fibers: toward paper materials with wet strength properties. Carbohydr Polym 193:353–361. https://doi.org/10.1016/j. carbpol.2018.04.009 McKenzie A, Higgins H (1955) The structure and properties of paper. III. Significance of swelling and hydrogen bonding in interfiber adhesion. Aust J Appl Sci 6:208–217 Mihara I, Sakaemura T, Yamauchi T (2008) Mechanism of paper strength development by the addition of dry strength resin and its distribution within and around a fiber wall: effect of application method. Nord Pulp Pap Res J 23(4):382–388. https://doi.org/10.3183/npprj-2008-23-04- p382-388 Nau M, Herzog N, Schmidt J, Meckel T, Andrieu-Brunsen A, Biesalski M (2019) Janus-type hybrid paper membranes. Adv Mater Interfaces 6(18):1900892. https://doi.org/10. 1002/admi.201900892 Page DH (1969) A theory for the tensile strength of paper. Tappi J 52(4):674–681 Prucker O, Brandstetter T, Ru¨he J (2018) Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications (review). Biointerphases 13(1):010801. https://doi.org/10.1116/1. 4999786 Scha¨fer CG, Gallei M, Zahn JT, Engelhardt J, Hellmann GP, Rehahn M (2013) Reversible light-, thermo-, and mechano- responsive elastomeric polymer Opal films. Chem Mater 25(11):2309–2318. https://doi.org/10.1021/cm400911j Siqueira EJ (2012) Polyamidoamine epichlorohydrin-based papers: mechanisms of wet strength development and paper repulping. Dissertation, Universite´ de Grenoble Strand A, Sundberg A, Retulainen E, Salminen K, Oksanen A, Kouko J, Ketola A, Khakalo A, Rojas O (2017) The effect of chemical additives on the strength, stiffness and elon- gation potential of paper. Nord Pulp Pap Res J 32(3):324–335. https://doi.org/10.3183/npprj-2017-32-03- p324-335 Tejado A, van de Ven TGM (2010) Why does paper get stronger as it dries? Mater Today 13(9):42–49. https://doi.org/10. 1016/S1369-7021(10)70164-4 Toomey R, Freidank D, Ru¨he J (2004) Swelling behavior of thin, surface-attached polymer networks. Macromolecules 37(3):882–887. https://doi.org/10.1021/ma034737v Wu N, Hubbe M, Rojas O, Park S (2009) Permeation of poly- electrolytes and other solutes into the pore spaces of water- swollen cellulose: a review. BioRes 4(3):1222–1262. https://doi.org/10.15376/biores.4.3.1222-1262
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
123
Made with FlippingBook Online newsletter maker