PAPERmaking! Vol7 Nr2 2021

Cellulose (2020) 27:6961–6976

6975

Open Access This article is licensed under a Creative Com- mons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any med- ium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

based materials. Nord Pulp Pap Res J (Biorefinery) 29(4):584–591 Jahangiri P, Logawa B, Korehei R, Hodgson M, Martinez DM, Olson JA (2016) On acoustical properties of novel foam- formed cellulose-based material. Nord Pulp Pap Res J 31(1):14–19 Ja¨rvinen M, Pihko R, Ketoja JA (2018) Density development in foam forming: wet pressing dynamics. Nord Pulp Pap Res J 33:226–236 Ketoja JA, Paunonen S, Jetsu P, Pa¨a¨kko¨nen E (2019) Com- pression strength mechanisms of low-density fibrous materials. Materials 12:384 Komori T, Makishima K (1977) Numbers of fiber-to-fiber contacts in general fiber assemblies. Text Res J 47:13–17 Lahtinen P, Liukkonen S, Pere J, Sneck A, Kangas HA (2014a) Comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9(2):2115–2127 Lahtinen P, Torvinen K, Kangas H, Liukkonen S, Sneck A, Peresin MS, Pere J, Ha¨nninen T, Meyer V, Tammelin T (2014b) Effect of fibrillated cellulosic additives on paper strength properties. In: PaperCON 2014 proceedings, TAPPI Luo Y, Xiao S, Li S (2017) Effect of initial water content on foaming quality and mechanical properties of plant fibre porous cushioning materials. BioResources 12(2):4259–4269 Madani A, Zeinoddini S, Varahmi S et al (2014) Ultra-light- weight paper foams: processing and properties. Cellulose 21:2023–2031 Ma¨kinen T, Koivisto J, Pa¨a¨kko¨nen E, Ketoja JA, Alava MJ (2020) Crossover from mean-field compression to collec- tive phenomena in low-density foam-formed fiber material. Soft Matter (submitted) Miller GD, Boylan JR, Jones RB (1998) Synthetic coating adhesives. Poly(vinyl alcohol)—a versatile polymer for paper and paperboard applications. Tappi Press Neagu C, Gamstedt K, Berthold F (2006) Stiffness contribution of various wood fibers to composite materials. J Compos Mater 40:663–699 Nurminen I, Saharinen E, Sirvio¨ J (2018) New technology for producing fibrillar fines directly from wood. BioResources 13(3):5032–5041 Paunonen S, Timofeev O, Torvinen K, Turpeinen T, Ketoja JA (2018) Improving compression recovery of foam-formed fiber materials. BioResources 13:4058–4074 Picu RC (2011) Mechanics of random fiber networks—a review. Soft Matter 7:6768–6785 Picu RC, Subramanian G (2011) Correlated heterogeneous deformation of entangled fiber networks. Phys Rev E 84(3):031904 Po¨hler T, Jetsu P, Isomoisio H (2016) Benchmarking new wood- fibre based sound absorbing material made with a foam- forming technique. Build Acoust 23(3–4):131–143 Po¨hler T, Jetsu P, Fougero´n A, Barraud V (2017) Use of papermaking pulps in foam-formed thermal insulation materials. Nord Pulp Pap Res J 32(3):367–374 Poranen J, Kiiskinen H, Salmela J, Asikainen J, Kera¨nen J, Pa¨a¨kko¨nen E (2013) Breakthrough in papermaking resource efficiency with foam forming. In Proceedings of the TAPPI PaperCon, Atlanta, GA, 28 April–1 May 2013

References

Alava M, Niskanen K (2006) The physics of paper. Rep Prog Phys 69:669–723 Alimadadi M, Uesaka T (2016) 3D-oriented fiber networks made by foam forming. Cellulose 23(1):661–671 Alimadadi M, Lindstro¨m SB, Kulachenko A (2018) Role of microstructures in the compression response of three-di- mensional foam-formed wood fibre networks. Soft Matter 14:8945–8955 Al-Qararah AM, Hjelt T, Koponen A, Harlin A, Ketoja JA (2015a) Response of wet foam to fibre mixing. Colloids Surf A Physicochem Eng Asp 467:97–106 Al-Qararah AM, Ekman A, Hjelt T, Ketoja JA, Kiiskinen H, Koponen A, Timonen J (2015b) A unique microstructure of the fiber networks deposited from foam-fiber suspensions. Colloids Surf A Physicochem Eng Asp 482:544–553 Barak S, Mudgil D (2014) Locust bean gum: processing, properties and food applications—a review. Int J Biol Macromol 66:74–80 Bergstro¨m P, Hossain S, Uesaka T (2019) Scaling behavior of strength of 3D-, semi-flexible-, cross-linked fibre network. Int J Solids Struct 166:68–74 Bossu J, Eckhart R, Czibula C, Winter A, Zankel A, Gindl- Altmutter W, Bauer W (2019) Fine cellulosic materials produced from chemical pulp: the combined effect of morphology and rate of addition on paper properties. Nanomaterials 9(3):321 Burke SR, Mo¨bius ME, Hjelt T, Hutzler S (2019) Properties of lightweight fibrous structures made by a novel foam forming technique. Cellulose 26(4):2529–2539 EN 826 (2013) Thermal insulating products for building appli- cations—determination of compression behaviour Finch CA (ed) (1992) Polyvinyl alcohol—developments. Wiley, London Hossain MS, Bergstro¨m P, Uesaka T (2019) Uniaxial com- pression of three-dimensional entangled fibre networks: impacts of contact interactions. Model Simul Mater Sci Eng 27:015006 Jahangiri P, Korehei R, Zeinoddini SS, Madani A, Sharma Y, Phillion A, Martinez DM, Olson JA (2014) On filtration and heat insulation properties of foam formed cellulose

123

Made with FlippingBook Online newsletter maker