Nanomaterials 2022 , 12 , 790
17of 19
Data Availability Statement: Not applicable. Acknowledgments: The authors wish to thank the Science and Innovation Ministry of Spain for the support of the project with reference PID 2020-113850RB-C21 as well as the support of Universidad Complutense de Madrid and Banco de Santander for the grant of J.L. Sanchez-Salvador (CT17/17). Besides, the authors express their gratitude to the Centro de Investigaci ó n Forestal of INIA (Madrid) for having allowed them to use its facilities, as well as to the Spanish National Centre of Electronic Microscopy for the support during image acquisition. Conflicts of Interest: The authors declare no conflict of interest.
References 1.
Beck, S.; Walker, C.; Batchelor, W. Priorities for development of standard test methods to support the commercialization of cellulose nanomaterials. In Proceedings of the International Conference on Nanotechnology for Renewable Materials 2019, Chiba, Japan, 7 June 2019; pp. 1041–1048. 2. Blanco, A.; Monte, M.C.; Campano, C.; Balea, A.; Merayo, N.; Negro, C. Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). In Handbook of Nanomaterials for Industrial Applications ; Elsevier: Amsterdam, The Netherlands, 2018; pp. 74–126. 3. Isogai, A.; Zhou, Y. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Curr. Opin. Solid State Mater. Sci. 2019 , 23 , 101–106. [CrossRef] 4. Trache, D.; Tarchoun, A.F.; Derradji, M.; Mehelli, O.; Hussin, M.H.; Bessa, W. Cellulose fibers and nanocrystals: Preparation, characterization, and surface modification. In Functionalized Nanomaterials I ; CRC Press: Boca Raton, FL, USA, 2020; pp. 171–190. 5. Osong, S.H.; Norgren, S.; Engstrand, P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: A review. Cellulose 2016 , 23 , 93–123. [CrossRef] 6. Raj, P.; Batchelor, W.; Blanco, A.; de la Fuente, E.; Negro, C.; Garnier, G. Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation. J. Colloid Interface Sci. 2016 , 481 , 158–167. [CrossRef] [PubMed] 7. Sir ó , I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010 , 17 , 459–494. [CrossRef] 8. Sanchez-Salvador, J.L.; Campano, C.; Negro, C.; Monte, M.C.; Blanco, A. Increasing the Possibilities of TEMPO-Mediated Oxidation in the Production of Cellulose Nanofibers by Reducing the Reaction Time and Reusing the Reaction Medium. Adv. Sustain. Syst. 2021 , 5 , 2000277. [CrossRef] 9. Ahola, S.; Myllytie, P.; Österberg, M.; Teerinen, T.; Laine, J. Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. Bioresources 2008 , 3 , 1315–1328. [CrossRef] 10. Balea, A.; Sanchez-Salvador, J.L.; Monte, M.C.; Merayo, N.; Negro, C.; Blanco, A. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Molecules 2019 , 24 , 1800. [CrossRef] 11. Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Negro, C.; Miller, M.; Olson, J.; Blanco, A. Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled Cardboard. Sci. Rep. 2020 , 10 , 3778. [CrossRef] [PubMed] 12. Bharimalla, A.; Deshmukh, S.; Vigneshwaran, N.; Patil, P.; Prasad, V. Nanocellulose-polymer composites for applications in food packaging: Current status, future prospects and challenges. Polym. Plast. Technol. Eng. 2017 , 56 , 805–823. [CrossRef] 13. Ghaderi, M.; Mousavi, M.; Yousefi, H.; Labbafi, M. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohyd. Polym. 2014 , 104 , 59–65. [CrossRef] 14. Niu, X.; Liu, Y.; Song, Y.; Han, J.; Pan, H. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohyd. Polym. 2018 , 183 , 102–109. [CrossRef] [PubMed] 15. Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci. 2019 , 267 , 47–61. [CrossRef] [PubMed] 16. Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014 , 59 , 302–325. [CrossRef] 17. Moohan, J.; Stewart, S.A.; Espinosa, E.; Rosal, A.; Rodr í guez, A.; Larrañeta, E.; Donnelly, R.F.; Dom í nguez-Robles, J. Cellulose nanofibers and other biopolymers for biomedical applications. A review. Appl. Sci. 2020 , 10 , 65. [CrossRef] 18. Balea, A.; Monte, M.C.; Fuente, E.; Sanchez-Salvador, J.L.; Blanco, A.; Negro, C. Cellulose nanofibers and chitosan to remove flexographic inks from wastewaters. Environ. Sci. Water Res. Technol. 2019 , 5 , 1558–1567. [CrossRef] 19. Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Ultra-fine cellulose nanofibers: New nano-scale materials for water purification. J.Mater. Chem. 2011 , 21 , 7507–7510. [CrossRef] 20. Balea, A.; Blanco, A.; Negro, C. Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review. Polymers 2019 , 11 , 518. [CrossRef] [PubMed] 21. Balea, A.; Blanco, A.; Delgado-Aguilar, M.; Monte, M.C.; Tarres, Q.; Mutj é , P.; Negro, C. Nanocellulose Characterization Challenges. Bioresources 2021 , 16 , 526. [CrossRef] 22. Balea, A.; Fuente, E.; Concepcion Monte, M.; Merayo, N.; Campano, C.; Negro, C.; Blanco, A. Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives. Molecules 2020 , 25 , 526. [CrossRef]
Made with FlippingBook - Online magazine maker