Nanomaterials 2022 , 12 , 790
18of 19
23. Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.; Cranston, E.D.; Eichhorn, S.J. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018 , 47 , 2609–2679. [CrossRef] 24. Serra-Parareda, F.; Tarr é s, Q.; Sanchez-Salvador, J.L.; Campano, C.; P è lach,M. À .;Mutj é , P.; Negro, C.; Delgado-Aguilar, M. Tuning morphology and structure of non-woody nanocellulose: Ranging between nanofibers and nanocrystals. Ind. Crop. Prod. 2021 , 171 , 113877. [CrossRef] 25. Balea, A.; Merayo, N.; Fuente, E.; Delgado-Aguilar, M.; Mutje, P.; Blanco, A.; Negro, C. Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties. Bioresources 2016 , 11 , 3416–3431. [CrossRef] 26. Campano, C.; Merayo, N.; Balea, A.; Tarres, Q.; Delgado-Aguilar, M.; Mutje, P.; Negro, C.; Blanco, A. Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 2018 , 25 , 269–280. [CrossRef] 27. Tan, Y.; Liu, Y.; Chen, W.; Liu, Y.; Wang, Q.; Li, J.; Yu, H. Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain. Chem. Eng. 2016 , 4 , 3766–3772. [CrossRef] 28. Raj, P.; Mayahi, A.; Lahtinen, P.; Varanasi, S.; Garnier, G.; Martin, D.; Batchelor, W. Gel point as a measure of cellulose nanofibre quality and feedstock development with mechanical energy. Cellulose 2016 , 23 , 3051–3064. [CrossRef] 29. Kumagai, A.; Endo, T.; Adachi, M. Evaluation of Cellulose Nanofi bers by Using Sedimentation Method. Jpn. Tappi J. 2019 , 73 , 461–469. [CrossRef] 30. Derakhshandeh, B.; Kerekes, R.; Hatzikiriakos, S.; Bennington, C. Rheology of pulp fibre suspensions: A critical review. Chem. Eng. Sci. 2011 , 66 , 3460–3470. [CrossRef] 31. Nasser, M.; James, A. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep. Purif. Technol. 2006 , 52 , 241–252. [CrossRef] 32. Sanchez-Salvador, J.L.; Monte, M.C.; Batchelor, W.; Garnier, G.; Negro, C.; Blanco, A. Characterizing highly fibrillated nanocellu- lose by modifying the gel point methodology. Carbohyd Polym. 2020 , 227 , 115340. [CrossRef] 33. Mosse, W.K.; Boger, D.V.; Simon, G.P.; Garnier, G. Effect of cationic polyacrylamides on the interactions between cellulose fibers. Langmuir 2012 , 28 , 3641–3649. [CrossRef] 34. Tiller, F.M.; Khatib, Z. The theory of sediment volumes of compressible, particulate structures. J. Colloid Interface Sci. 1984 , 100 , 55–67. [CrossRef] 35. Martinez, D.; Buckley, K.; Jivan, S.; Lindstrom, A.; Thiruvengadaswamy, R.; Olson, J.; Ruth, T.; Kerekes, R. Characterizing the mobility of papermaking fibres during sedimentation. In Proceedings of the The Science of Papermaking: Transactions of the 12th Fundamental Research Symposium, Oxford, UK, September 2001 ; The Pulp and Paper Fundamental Research Society: Bury, UK, 2001; pp. 225–254. 36. Zhang, L.; Batchelor, W.; Varanasi, S.; Tsuzuki, T.; Wang, X. Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 2012 , 19 , 561–574. [CrossRef] 37. Varanasi, S.; He, R.; Batchelor, W. Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 2013 , 20 , 1885–1896. [CrossRef] 38. Raj, P.; Varanasi, S.; Batchelor, W.; Garnier, G. Effect of cationic polyacrylamide on the processing and properties of nanocellulose films. J. Colloid Interface Sci. 2015 , 447 , 113–119. [CrossRef] [PubMed] 39. Sanchez-Salvador, J.L.; Monte, M.C.; Negro, C.; Batchelor, W.; Garnier, G.; Blanco, A. Simplification of gel point characterization of cellulose nano and microfiber suspensions. Cellulose 2021 , 28 , 6995–7006. [CrossRef] 40. Celzard, A.; Fierro, V.; Kerekes, R. Flocculation of cellulose fibres: New comparison of crowding factor with percolation and effective-medium theories. Cellulose 2009 , 16 , 983–987. [CrossRef] 41. Kerekes, R.; Schell, C. Regimes by a crowding factor. J. Pulp. Pap. Sci. 1992 , 18 , J32–J38. 42. Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007 , 8 , 2485–2491. [CrossRef] 43. Kaushal, M.; Sirohiya, V.; Rathore, R. Corrugated board structure: A review. Int. J. Appl. Eng. Technol. 2015 , 2 , 228–234. 44. ISO 5263-1:2004. Pulps—Laboratory Wet Disintegration—Part 1: Disintegration of Chemical Pulps ; ISO: Geneva, Switzerland, 2004. 45. ISO 5269-2:2004. Pulps—Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Köthen Method ; ISO: Geneva, Switzer- land, 2004. 46. ISO 1924-3:2005. Paper and Board—Determination of Tensile Properties—Part 3: Constant Rate of Elongation Method (100 mm/min) ; ISO: Geneva, Switzerland, 2005. 47. ISO 2759:2014. Board—Determination of Bursting Strength ; ISO: Geneva, Switzerland, 2014. 48. TAPPI T826 om-21. Short Span Compressive Strength of Containerboard ; TAPPI: Geneva, Switzerland, 2021. 49. ISO 1974:2012. Paper—Determination of Tearing Resistance—Elmendorf Method ; ISO: Geneva, Switzerland, 2012. 50. ISO 5636-3:2013. Paper and Board—Determination of Air Permeance (Medium Range)—Part 3: Bendtsen Method ; ISO: Geneva, Switzerland, 2013. 51. ISO 534:2011. Paper and Board—Determination of Thickness, Density and Specific Volume ; ISO: Geneva, Switzerland, 2011. 52. ISO 536:2019. Paper and Board—Determination of Grammage ; ISO: Geneva, Switzerland, 2019. 53. Sanchez-Salvador, J.L.; Campano, C.; Lopez-Exposito, P.; Tarr é s, Q.;Mutj é , P.; Delgado-Aguilar, M.; Monte, M.C.; Blanco, A. Enhanced Morphological Characterization of Cellulose Nano/Microfibers through Image Skeleton Analysis. Nanomater. Basel 2021 , 11 , 2077. [CrossRef]
Made with FlippingBook - Online magazine maker