A. Kübra Yontar et al.
Inorganic Chemistry Communications 159 (2024) 111865
[56] N. Srikhao, A. Ounkaew, N. Srichiangsa, S. Phanthanawiboon, T. Boonmars, A. Artchayasawat, S. Theerakulpisut, M. Okhawilai, P. Kasemsiri, Green- synthesized silver nanoparticle coating on paper for antibacterial and antiviral applications, Polym. Bull. 80 (9) (2023) 9651 – 9668, https://doi.org/10.1007/ s00289-022-04530-6. [57] S.D. Senol, E. Ozugurlu, L. Arda, Synthesis, structure and optical properties of (Mn/ Cu) co-doped ZnO nanoparticles, J. Alloy. Compd. 822 (2) (2020), 153514, https://doi.org/10.1016/j.jallcom.2019.153514. [58] N. Srikhao, S. Theerakulpisut, P. Chindaprasirt, M. Okhawilai, R. Narain, P. Kasemsiri, Green synthesis of nano silver-embedded carboxymethyl starch waste/poly vinyl alcohol hydrogel with photothermal sterilization and pH- responsive behavior, Int. J. Biol. Macromol. 242 (2023), 125118, https://doi.org/ 10.1016/j.ijbiomac.2023.125118. [59] A. Serrano, O. Caballero-Calero, M. ´ A. García, S. Lazi ´ c, N. Carmona, G.R. Castro, M. Martín-Gonz ´ alez, J.F. Fern ´ andez, Cold sintering process of ZnO ceramics: Effect of the nanoparticle/microparticle ratio, J. Eur. Ceram. Soc. 40 (15) (2020) 5535 – 5542, https://doi.org/10.1016/j.jeurceramsoc.2020.05.059. [60] C. Jarensungnen, K. Jetsrisuparb, S. Phanthanawiboon, S. Theerakulpisut, S. Hiziroglu, J.T.N. Knijnenburg, M. Okhawilai, P. Kasemsiri, Development of eco- friendly antifungal and antibacterial adhesive derived from modified cassava starch waste/polyvinyl alcohol containing green synthesized nano-silver, Sci. Rep. 13 (1) (2023) 1, https://doi.org/10.1038/s41598-023-40305-3. [61] M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol – gel deposited Al-doped ZnO thin films, Surf. Interfaces 16 (2019) 120 – 126, https://doi.org/10.1016/j.surfin.2019.05.007. [62] J. Zhao, Y. Ma, X. Wu, S. Wang, Z. Li, S. Zhao, Efficient capture of mercury ions by a novel organic melamine polymer, Mater. Today Commun. 35 (2023), 106230, https://doi.org/10.1016/j.mtcomm.2023.106230. [63] W. Si, Q. Xie, Y. Shen, Z. Wang, Melamine-formaldehyde resin derived carbon catalysts with abundant intrinsic defects to afford superior oxygen reduction activity, Catal. Lett. 32 (2023) 1907879, https://doi.org/10.1007/s10562-023- 04412-0. [64] A. Alahmad, W.A. Al-Zereini, T.J. Hijazin, O.Y. Al-Madanat, I. Alghoraibi, O. Al- Qaralleh, S. Al-Qaraleh, A. Feldhoff, J.-G. Walter, T. Scheper, Green synthesis of silver nanoparticles using Hypericum perforatum L. aqueous extract with the evaluation of its antibacterial activity against clinical and food pathogens, Pharmaceutics 14 (5) (2022), https://doi.org/10.3390/pharmaceutics14051104. [65] S. Singla, A. Jana, R. Thakur, C. Kumari, S. Goyal, J. Pradhan, Green synthesis of silver nanoparticles using Oxalis griffithii extract and assessing their antimicrobial activity, Open Nano 7 (2022), 100047, https://doi.org/10.1016/j. onano.2022.100047. [66] A. Wasilewska, U. Klekotka, M. Zambrzycka, G. Zambrowski, I. ´ Swi ę cicka, B. Kalska-Szostko, Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis, Food Chem. 400 (2023), 133960, https://doi.org/10.1016/j.foodchem.2022.133960. [67] A.K. Alzubaidi, W.J. Al-Kaabi, A.A. Ali, S. Albukhaty, H. Al-Karagoly, G. M. Sulaiman, M. Asiri, Y. Khane, Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and
antioxidant activities, Appl. Sci. 13 (4) (2023) 2182, https://doi.org/10.3390/ app13042182. [68] K. Wolny-Ko ł adka, D. Malina, A. Suder, K. Pluta, Z. Wzorek, Bio-based synthesis of silver nanoparticles from waste agricultural biomass and its antimicrobial activity, Processes 10 (2) (2022) 389, https://doi.org/10.3390/pr10020389. [69] H. Zhang, Y. Lu, Q. Zhang, F. Yang, A. Hui, A. Wang, Structural evolution of palygorskite-rich clay as the nanocarriers of silver nanoparticles for efficient improving antibacterial activity, Colloids Surf. A Physicochem. Eng. Asp. 652 (2022), 129885, https://doi.org/10.1016/j.colsurfa.2022.129885. [70] D. Borah, N. Das, P. Sarmah, K. Ghosh, M. Chandel, J. Rout, P. Pandey, N.N. Ghosh, C.R. Bhattacharjee, A facile green synthesis route to silver nanoparticles using cyanobacterium Nostoc carneum and its photocatalytic, antibacterial and anticoagulative activity, Mater. Today Commun. 34 (8) (2023), 105110, https:// doi.org/10.1016/j.mtcomm.2022.105110. [71] Q. Dong, D. Zu, L. Kong, S. Chen, J. Yao, J. Lin, L. Lu, B. Wu, B. Fang, Construction of antibacterial nano-silver embedded bioactive hydrogel to repair infectious skin defects, Biomater. Res. 26 (1) (2022) 36, https://doi.org/10.1186/s40824-022- 00281-7. [72] M.T. Yassin, A.-A.-F. Mostafa, A.A. Al-Askar, F.O. Al-Otibi, Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens, Crystals 12 (8) (2022) 1057, https://doi. org/10.3390/cryst12081057. [73] R. Zein, I. Alghoraibi, C. Soukkarieh, M.T. Ismail, A. Alahmad, Influence of polyvinylpyrrolidone concentration on properties and anti-bacterial activity of green synthesized silver nanoparticles, Micromachines (Basel) 13 (5) (2022), https://doi.org/10.3390/mi13050777. [74] A. Zhou, Y. Zhang, X. Zhang, Y. Deng, D. Huang, C. Huang, Q. Qu, Quaternized chitin/tannic acid bilayers layer-by-layer deposited poly(lactic acid)/polyurethane nanofibrous mats decorated with photoresponsive complex and silver nanoparticles for antibacterial activity, Int. J. Biol. Macromol. 201 (2022) 448 – 457, https://doi.org/10.1016/j.ijbiomac.2022.01.065. [75] A.K. Yontar, S. Çevik, Electrospray deposited plant-based polymer nanocomposite coatings with enhanced antibacterial activity for Ti-6Al-4V implants, Prog. Org. Coat. 186 (Suppl. 1) (2024), 107965, https://doi.org/10.1016/j. porgcoat.2023.107965. [76] M. Barb ˘ alat ˘ a-M ˆ andru, D. Serbezeanu, M. Butnaru, C.M. Rîmbu, A.A. Enache, M. Aflori, Poly(vinyl alcohol)/Plant Extracts Films: Preparation, Surface Characterization and Antibacterial Studies against Gram Positive and Gram Negative Bacteria, Materials (Basel) 15 (7) (2022). 10.3390/ma15072493. [77] S. Chouhan, S. Guleria, Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α -amylase inhibitory activity, Mater. Sci. Energy Technol. 3 (3) (2020) 536 – 544, https://doi.org/ 10.1016/j.mset.2020.05.004. [78] L. Schofs, M.D. Sparo, S.F. S ´ anchez Bruni, The antimicrobial effect behind Cannabis sativa, Pharmacol. Res. Perspect. 9 (2) (2021) e00761. [79] M.E. Vozza Berardo, J.R. Mendieta, M.D. Villamonte, S.L. Colman, D. Nercessian, Antifungal and antibacterial activities of Cannabis sativa L. resins, J. Ethnopharmacol. 318 (Pt A) (2024) 116839. 10.1016/j.jep.2023.116839.
12
Made with FlippingBook Online newsletter maker