Sustainability 2022 , 14 , 13536
11of 11
6. Tarnawski, W. Emission factors for combustion of biomass fuels in the pulp and paper mills. Czas. Fibres Text. East. Eur. 2004 , 12 , 91–95. 7. van Ewijk, S.; Park, J.Y.; Chertow, M. Quantifying the system-wide recovery potential of waste in the global paper life cycle. Resour. Conserv. Recycl. 2018 , 134 , 48–60. [CrossRef] 8. Kaur, R.; Tyagi, R.D.; Zhang, X. Review on pulp and paper activated sludge pretreatment, inhibitory effects and detoxification strategies for biovalorization. Environ. Res. 2020 , 182 , 109094. [CrossRef] [PubMed] 9. Martins, F.M.; Martins, J.M.; Ferracin, L.C.; da Cunha, C.J. Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill. J. Hazard. Mater. 2007 , 147 , 610–617. [CrossRef] 10. de Azevedo, A.R.G.; Alexandre, J.; Pessanha, L.S.P.; Manh ã es, R.d.S.T.; de Brito, J.; Marvila, M.T. Characterizing the paper industry sludge for environmentally-safe disposal. Waste Manag. 2019 , 95 , 43–52. [CrossRef] 11. Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A. Preparation of clinker from paper pulp industry wastes. J. Hazard. Mater. 2015 , 286 , 252–260. [CrossRef] 12. Singh, S.K.; Singh, A.; Singh, B.; Vashistha, P. Application of thermo-chemically activated lime sludge in production of sustainable low clinker cementitious binders. J. Clean. Prod. 2020 , 264 , 121570. [CrossRef] 13. Ferreiro, S.; Fr í as, M.; Vigil de la Villa, R.; S á nchez de Rojas, M.I. The influence of thermal activation of art paper sludge on the technical properties of blended Portland cements. Cem. Concr. Compos. 2013 , 37 , 136–142. [CrossRef] 14. Ukrainczyk, N.; Vrbos, N.; Koenders, E.A.B. Reuse of woody biomass ash waste in cementitious materials. Chem. Biochem. Eng. Q. 2016 , 30 , 137–148. [CrossRef] 15. Yi, T.; Liou, S.-R.; Kuo, W.-Y. The Interaction Effects of the Parameters on Optimization Design in Paper Production Waste Usage on Alkali-Activated Slag with Taguchi Method. J. Renew. Mater. 2022 , 10 , 1753–1772. [CrossRef] 16. Wyrzykowski, M.; Ghourchian, S.; Sinthupinyo, S.; Chitvoranund, N.; Chintana, T.; Lura, P. Internal curing of high performance mortars with bottom ash. Cem. Concr. Compos. 2016 , 71 , 1–9. [CrossRef] 17. Wang, S.-D.; Scrivener, K.L.S. Hydration products of alkali activated slag cement. Cem. Concr. Res. 1995 , 25 , 561–571. [CrossRef] 18. Xu, H.; Van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000 , 59 , 247–266. [CrossRef] 19. Chen, J.-H. Silicon-Contained Waste as a Raw Material of Inorganic Polymers. Ph. D. Thesis, National Cheng Kung University, Tainan City, Taiwan, 2009. 20. Huang, K.; Fan, X.; Gan, M.; Ji, Z. Use of Municipal Solid Waste Incinerator (MSWI) Fly Ash in Alkali Activated Slag Cement. In Characterization of Minerals, Metals, and Materials 2019 ; Springer: Berlin/Heidelberg, Germany, 2019; pp. 401–410. 21. Gao, X.; Yuan, B.; Yu, Q.L.; Brouwers, H.J.H. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag. J. Clean. Prod. 2017 , 164 , 410–419. [CrossRef] 22. Kang, S.-P.; Kwon, S.-J.J.C.; Materials, B. Effects of red mud and alkali-activated slag cement on efflorescence in cement mortar. Constr. Build. Mater. 2017 , 133 , 459–467. [CrossRef] 23. Liu, G.; Florea, M.; Brouwers, H.J.H. Waste glass as binder in alkali activated slag–fly ash mortars. Mater. Struct. 2019 , 52 , 101. [CrossRef] 24. Long, W.-J.; Tan, X.-W.; Xiao, B.-X.; Han, N.-X.; Xing, F. Effective use of ground waste expanded perlite as green supplementary cementitious material in eco-friendly alkali activated slag composites. J. Clean. Prod. 2019 , 213 , 406–414. [CrossRef] 25. Choi, H.; Choi, Y.C. Setting characteristics of natural cellulose fiber reinforced cement composite. Constr. Build. Mater. 2021 , 271 , 121910. [CrossRef] 26. Dai, X.; Aydin, S.; Yücel Yardimci, M.; Qiang, R.E.N.; Lesage, K.; De Schutter, G. Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem. Concr. Compos. 2021 , 124 , 104244. [CrossRef] 27. de Azevedo, A.R.G.; Alexandre, J.; Xavier, G.d.C.; Pedroti, L.G. Recycling paper industry effluent sludge for use in mortars: A sustainability perspective. J. Clean. Prod. 2018 , 192 , 335–346. [CrossRef] 28. Saeli, M.; Senff, L.; Tobaldi, D.M.; Carvalheiras, J.; Seabra, M.P.; Labrincha, J.A. Unexplored alternative use of calcareous sludge from the paper-pulp industry in green geopolymer construction materials. Constr. Build. Mater. 2020 , 246 , 118457. [CrossRef] 29. Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R.J.C.; Materials, B. Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Constr. Build. Mater. 2020 , 258 , 119697. [CrossRef] 30. Shi, C.; Roy, D.; Krivenko, P. Alkali-Activated Cements and Concretes ; CRC Press: Boca Raton, FL, USA, 2003.
Made with FlippingBook Online newsletter maker