Sustainability 2023 , 15 , 2850
12of 13
21. Obradovic, D.; Mishra, L.N. Mechanical properties of recycled paper and cardboard. J. Eng. Exact Sci. 2020 , 6 , 0429–0434. [CrossRef] 22. Faubert, P.; Barnab é , S.; Bouchard, S.; C ô t é , R.; Villeneuve, C. Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resour. Conserv. Recycl. 2016 , 108 , 107–133. [CrossRef] 23. Liao, C.; Kannan, K. Widespread occurrence of bisphenol A in paper and paper products: Implications for human exposure. Environ. Sci. Technol. 2011 , 45 , 9372–9379. [CrossRef] [PubMed] 24. Pivnenko, K.; Eriksson, E.; Astrup, T.F. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Manag. 2015 , 45 , 134–142. [CrossRef] 25. Geens, T.; Goeyens, L.; Kannan, K.; Neels, H.; Covaci, A. Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci. Total Environ. 2012 , 435–436 , 30–33. [CrossRef] 26. Ervasti, I.; Miranda, R.; Kauranen, I. A global, comprehensive review of literature related to paper recycling: A pressing need for a uniform system of terms and definitions. Waste Manag. 2016 , 48 , 64–71. [CrossRef] 27. Grossmann, H.; Handke, T.; Brenner, T. Paper recycling. In Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists ; Elsevier: Amsterdam, The Netherlands, 2014; pp. 165–178. [CrossRef] 28. Technologies for paper recycling. In Lead Markets for Environmental Innovations. ZEW Economic Studies ; Physica-Verlag Heidelberg: Heidelberg, Germany, 2005; Volume 27, pp. 205–2016. [CrossRef] 29. Jin, H.; Kose, R.; Akada, N.; Okayama, T. Relationship between wettability of pulp fibers and tensile strength of paper during recycling. Sci. Rep. 2022 , 12 , 1560. [CrossRef] 30. Ali, I. Study of the mechanical behavior of recycled fibers. Applications to papers and paperboards. In Contribution à l’ É tudeDu Comportement M é canique Des Fibres Recycl é es ; Applications Aux Support; Universit é de Grenoble: Grenoble, France, 2013. 31. Valchev, I.V.; Bikov, P.I.; Blyahovski, V.N.; Tsekova, P.B. New Possibilities for Recycled Paper Bleaching. In Proceedings of the 16th International Symposium Wood, Fiber Pulping Chemistry, Tianjin, China, 8–10 June 2011; Volume 1, pp. 677–681. 32. Optimization of Bleaching and Deinking of Waste Paper for Strength and Brightness Improvement. European Commission CORDIS EU Research Result. Available online: https://cordis.europa.eu/project/id/MP2B0006/pl (accessed on 20 August 2022). 33. Kopania, E.; Stupin´ ska, H.; Palenik, J. Susceptibility of deinked waste paper mass to peroxide bleaching. Fibres Text. East. Eur. 2008 , 16 , 112–116. 34. Pes¸man, E.; Parlak, M. Recycling of colored office paper. Part II: Postbleaching with formamidine sulfinic acid and hydrogen peroxide. BioResources 2019 , 13 , 4841–4855. [CrossRef] 35. Zeb, H.; Hussain, M.A.; Ahmed, I.; Akram, M.S.; Haider, B.; Haider, R.; Babar, Z.B.; Saleem, R.M.; Ahsan, A.; Aziz, I.; et al. Study of bleaching of old newsprint recycled paper: Reproduction of newspaper material. Mater. Res. Express 2021 , 8 , 085305. [CrossRef] 36. Bajpai, P. Deinking with enzymes. Recycl. Deinking Recover. Pap. 2014 , 139–153. [CrossRef] 37. Kumar, A.; Dutt, D. A Comparative study of conventional chemical deinking and environment-friendly bio-deinking of mixed office wastepaper. Sci. African 2021 , 12 , e00793. [CrossRef] 38. Hasanin, M.S.; Hashem, A.H.; Abd El-Sayed, E.S.; El-Saied, H. Green ecofriendly bio-deinking of mixed office waste paper using various enzymes from Rhizopus microsporus AH3: Efficiency and characteristics. Cellulose 2020 , 27 , 4443–4453. [CrossRef] 39. Lasheva, V.; Todorova, D.; Kotlarova, S.; Kamburov, M. Deinking of Waste Offset Printed Paper by the Use of Enzymes. Int. Sci. J. Sci. Business, Soc. 2016 , 1 , 26–28. 40. Paper Recycling. Monitoring Report 2011, ERPC European Declaration on Paper Recycling 2011–2015 ; Paper Recycling: Brussel, Belgium, 2011; pp. 1–8. Available online: http://www.cobelpa.be/pdf/Monitoring%20report%20final.pdf (accessed on 30 November 2022). 41. Li, S.; Wu, Z.; Wu, Z.; Liu, G. Enhancing fiber recovery from wastewater may require toilet paper redesign. J. Clean. Prod. 2020 , 261 , 121138. [CrossRef] 42. Su, Z.H.; Fan, S.J.; Zhang, Y.; Tian, C.; Gong, C.; Ni, J.P.; Yang, B.; Peng, F.; Korkko, M.; Mahmoud, M.S. Industrial scale-up of fiber recovery technology from mixed office waste fine screen rejects. BioResources 2020 , 15 , 6420–6430. [CrossRef] 43. Cortright, A. Paper Recycling Fiber Recapture. Honors Thesis, Western Michigan University, Kalamazoo, MI, USA, 2020. 44. Small-Scale Paper Fiber Recovery. Final Report. 1995. Available online: https://p2infohouse.org/ref/17/16804.pdf (accessed on 23 November 2022). 45. Barber, S.D. Analysis and Prevention of Usable Fiber Loss from a Fine Paper Mill. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1998. 46. Adu, C.; Jolly, M.; Thakur, V.K. Exploring new horizons for paper recycling: A review of biomaterials and biorefinery feedstocks derived from wastepaper. Curr. Opin. Green Sustain. Chem. 2018 , 13 , 21–26. [CrossRef] 47. Haile, A.; Gelebo, G.G.; Tesfaye, T.; Mengie, W.; Mebrate, M.A.; Abuhay, A.; Limeneh, D.Y. Pulp and paper mill wastes: Utilizations and prospects for high value-added biomaterials. Bioresour. Bioprocess. 2021 , 8 , 35. [CrossRef] 48. Al-Battashi, H.; Annamalai, N.; Al-Kindi, S.; Nair, A.S.; Al-Bahry, S.; Verma, J.P.; Sivakumar, N. Production of bioplastic (poly- 3-hydroxybutyrate) using waste paper as a feedstock: Optimization of enzymatic hydrolysis and fermentation employing burkholderia sacchari. J. Clean. Prod. 2019 , 214 , 236–247. [CrossRef] 49. Absorbing Research Produces Aerogels from Waste Paper. Materials Today. Available online: https://www.materialstoday.com/ biomaterials/news/research-produces-aerogels-from-waste-paper/ (accessed on 23 November 2022).
Made with FlippingBook Digital Proposal Creator