Polymers 2023 , 15 , 1393
19of 21
87. San, H.; Laorenza, Y.; Behzadfar, E.; Sonchaeng, U.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Promhuad, K.; Srisa, A.; Wongphan, P.; et al. Functional Polymer and Packaging Technology for Bakery Products. Polymers 2022 , 14 , 3793. [CrossRef] 88. Sonchaeng, U.; Promsorn, J.; Bumbudsanpharoke, N.; Chonhenchob, V.; Sablani, S.S.; Harnkarnsujarit, N. Polyesters Incorporating Gallic Acid as Oxygen Scavenger in Biodegradable Packaging. Polymers 2022 , 14 , 5296. [CrossRef] 89. Kaewpetch, T.; Pratummang, A.; Suwarak, S.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Bumbudsanpharoke, N.; Lorenzo, J.M.; Harnkarnsujarit, N. Ylang-ylang ( Cananga odorata ) essential oils with flora odorants enhanced active function of biodegrad- able polyester films produced by extrusion. Food Biosci. 2023 , 51 , 102284. [CrossRef] 90. Sanchez-Garcia, M.D.; Gimenez, E.; Lagaron, J.M. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr. Polym. 2008 , 71 , 235–244. [CrossRef] 91. Ludueña, L.; V á zquez, A.; Alvarez, V. Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr. Polym. 2012 , 87 , 411–421. [CrossRef] [PubMed] 92. Promhuad, K.; Bumbudsanpharoke, N.; Wadaugsorn, K.; Sonchaeng, U.; Harnkarnsujarit, N. Maltol-Incorporated Acetylated Cassava Starch Films for Shelf-Life-Extension Packaging of Bakery Products. Polymers 2022 , 14 , 5342. [CrossRef] [PubMed] 93. Sirviö, J.A.; Kolehmainen, A.; Liimatainen, H.; Niinimäki, J.; Hormi, O.E. Biocomposite cellulose-alginate films: Promising packaging materials. FoodChem. 2014 , 151 , 343–351. [CrossRef] 94. Thiagamani, S.M.K.; Pulikkalparambil, H.; Siengchin, S.; Ilyas, R.A.; Krishnasamy, S.; Muthukumar, C.; Radzi, A.M.; Rangappa, S.M. Mechanical, absorption, and swelling properties of jute/kenaf/banana reinforced epoxy hybrid composites: Influence of various stacking sequences. Polym. Compos. 2022 , 43 , 8297–8307. [CrossRef] 95. Cetin, M.S.; Aydogdu, R.B.; Toprakci, O.; Karahan Toprakci, H.A. Sustainable, Tree-Free, PLA Coated, Biodegradable, Barrier Papers from Kendir (Turkish Hemp). J. Nat. Fibers 2022 , 19 , 13802–13814. [CrossRef] 96. Das, S.; Rani, P.; Tripathy, P.P. Development and Characterization of Betel Nut Fiber Composite as a Food Packaging Material. J. Nat. Fibers 2020 , 19 , 747–760. [CrossRef] 97. Sanchez-Garcia, M.D.; Lopez-Rubio, A.; Lagaron, J.M. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci. Technol. 2010 , 21 , 528–536. [CrossRef] 98. Phothisarattana, D.; Harnkarnsujarit, N. Migration, aggregations and thermal degradation behaviors of TiO 2 and ZnO incorpo- rated PBAT/TPS nanocomposite blown films. Food Packag. Shelf Life 2022 , 33 , 100901. [CrossRef] 99. Promsorn, J.; Harnkarnsujarit, N. Pyrogallol loaded thermoplastic cassava starch based films as bio-based oxygen scavengers. Ind. Crops Prod. 2022 , 186 , 115226. [CrossRef] 100. Promsorn, J.; Harnkarnsujarit, N. Oxygen absorbing food packaging made by extrusion compounding of thermoplastic cassava starch with gallic acid. Food Control 2022 , 142 , 109273. [CrossRef] 101. Peterson, S.; Jayaraman, K.; Bhattacharyya, D. Forming performance and biodegradability of woodfibre–Biopol™ composites. Compos. Part A Appl. Sci. Manuf. 2002 , 33 , 1123–1134. [CrossRef] 102. Gassan, J.; Bledzki, A.K. The influence of fiber-surface treatment on the mechanical properties of jute-polypropylene composites. Compos. Part A Appl. Sci. Manuf. 1997 , 28 , 1001–1005. [CrossRef] 103. Kim, B.S.; Nguyen, M.H.; Hwang, B.S.; Lee, S. Effect of plasma treatment on the mechanical properties of natural fiber/polypropylene composites. In Natural Filler and Fibre Composites ; WIT Press: Southampton, UK, 2015; pp. 27–35. 104. Varghese, S.A.; Pulikkalparambil, H.; Rangappa, S.M.; Parameswaranpillai, J.; Siengchin, S. Antimicrobial active packaging based on PVA/Starch films incorporating basil leaf extracts. Mater. Today Proc. 2023 , 72 , 3056–3062. [CrossRef] 105. Sun, D. Surface Modification of Natural Fibers Using Plasma Treatment. In Biodegradable Green Composites ; Wiley: Hoboken, NJ, USA, 2016; pp. 18–39. 106. Borah, J.; Dutta, N. Development and Properties Evaluation of Betel Nut Fibres Composite Material. Mater. Today Proc. 2018 , 5 , 2229–2233. [CrossRef] 107. Senthilkumar, K.; Saba, N.; Chandrasekar, M.; Jawaid, M.; Rajini, N.; Siengchin, S.; Ayrilmis, N.; Mohammad, F.; Al-Lohedan, H.A. Compressive, dynamic and thermo-mechanical properties of cellulosic pineapple leaf fibre/polyester composites: Influence of alkali treatment on adhesion. Int. J. Adhes. Adhes. 2021 , 106 , 102823. [CrossRef] 108. Ciannamea, E.M.; Stefani, P.M.; Ruseckaite, R.A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010 , 101 , 818–825. [CrossRef] 109. Salam, A.; Reddy, N.; Yang, Y. Bleaching of Kenaf and Cornhusk Fibers. Ind. Eng. Chem. Res. 2007 , 46 , 1452–1458. [CrossRef] 110. Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 2009 , 49 , 1253–1272. [CrossRef] 111. Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007 , 15 , 25–33. [CrossRef] 112. Agrawal, R.; Saxena, N.S.; Sharma, K.B.; Thomas, S.; Sreekala, M.S. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater. Sci. Eng. A 2000 , 277 , 77–82. [CrossRef] 113. Smith, M.K.M.; Paleri, D.M.; Abdelwahab, M.; Mielewski, D.F.; Misra, M.; Mohanty, A.K. Sustainable composites from poly(3- hydroxybutyrate) (PHB) bioplastic and agave natural fibre. Green Chem. 2020 , 22 , 3906–3916. [CrossRef] 114. Mohanty, J.R.; Das, S.N.; Das, H.C.; Swain, S.K. Effect of chemically modified date palm leaf fiber on mechanical, thermal and rheological properties of polyvinylpyrrolidone. Fibers Polym. 2014 , 15 , 1062–1070. [CrossRef]
Made with FlippingBook Digital Proposal Creator