RSC Advances View Article Online
Review
for the fabrication of advanced materials – A review, J. Mol. Liq. , 2020, 301, DOI: 10.1016/j.molliq.2019.112417 . 10 J. Gil-Ch´avez, S. S. P. Padhi, U. Hartge, S. Heinrich and I. Smirnova, Optimization of the spray-drying process for developing aquasolv lignin particles using response surface methodology, Adv. Powder Technol. , 2020, 31 (6), 2348 – 2356, DOI: 10.1016/j.apt.2020.03.027 . 11 H. Ari ffi n, S. M. Sapuan and M. Ali Hassa, Lignocellulose for Future Bioeconomy , 2019. 12 A. Morales, M. A´. Andr´es, J. Labidi and P. Gull´on, UV-vis protective poly(vinyl alcohol)/bio-oil innovative lms, Ind. Crops Prod. , 2019, 131 , 281 – 292, DOI: 10.1016/ j.indcrop.2019.01.071 . 13 S. E. Klein, J. Rumpf, A. Alzagameem, M. Rehahn and M. Schulze, Antioxidant activity of unmodi ed kra and organosolv lignins to be used as sustainable components for polyurethane coatings, J. Coat. Technol. Res. , 2019, 16 (6), 1543 – 1552, DOI: 10.1007/s11998-019-00201-w . 14 T. Li, S. Lü, S. Zhang, C. Gao and M. Liu, Lignin-based multifunctional fertilizer for immobilization of Pb (II) in contaminated soil, J. Taiwan Inst. Chem. Eng. , 2018, 91 , 643 – 652, DOI: 10.1016/j.jtice.2018.06.025 . 15 L. Gu, M. Y. Xie, Y. Jin, et al. , Construction of antifouling membrane surfaces through layer-by-layer self-assembly of lignosulfonate and polyethyleneimine, Polymers , 2019, 11 (11), 9 – 11, DOI: 10.3390/polym11111782 . 16 L. Hu, C. Guang, Y. Liu, et al. , Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent, Chemosphere , 2020, 246 , 125757, DOI: 10.1016/ j.chemosphere.2019.125757 . 17 A. Eraghi Kazzaz, Z. Hosseinpour Feizi and P. Fatehi, Gra ing strategies for hydroxy groups of lignin for producing materials, Green Chem. , 2019, 21 (21), 5714 – 5752, DOI: 10.1039/c9gc02598g . 18 N. S. Çetin and N. O¨zmen, Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: I. Organosolv lignin modi ed resins, Int. J. Adhes. Adhes. , 2002, 22 (6), 477 – 480, DOI: 10.1016/S0143-7496(02)00058-1 . 19 C. Scarica, R. Suriano, M. Levi, S. Turri and G. Gri ffi ni, Lignin Functionalized with Succinic Anhydride as Building Block for Biobased Thermosetting Polyester Coatings, ACS Sustainable Chem. Eng. , 2018, 6 (3), 3392 – 3401, DOI: 10.1021/acssuschemeng.7b03583 . 20 B. M. Upton and A. M. Kasko, Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective, Chem. Rev. , 2016, 116 (4), 2275 – 2306, DOI: 10.1021/acs.chemrev.5b00345 . 21 M. Parit and Z. Jiang, Towards lignin derived thermoplastic polymers, Int. J. Biol. Macromol. , 2020, 165 , 3180 – 3197,DOI: 10.1016/j.ijbiomac.2020.09.173 . 22 M. Tanase-Opedal, E. Espinosa, A. Rodr´ ı guez and C.-C. G. Lignin, A biopolymer from forestry biomass for biocomposites and 3D printing, Materials , 2019, 12 (18), 1 – 15, DOI: 10.3390/ma12183006 . 23 J. Bouajila, P. Dole, C. Joly and A. Limare, Some laws of a lignin plasticization, J. Appl. Polym. Sci. , 2006, 102 (2), 1445 – 1451, DOI: 10.1002/app.24299 .
utilized in some of the reviewed literature, hence providing the ground for new and promising technology in the future.
Author contributions Jost Ruwoldt: conceptualization, writing original dra , review, editing & visualization. Fredrik Heen Blindheim: writing & visualization. Gary Chinga-Carrasco: writing, review, editing, visualization, supervision.
Con fl icts of interest
The authors declare no con ict of interest.
Acknowledgements
The authors thank the Research Council of Norway for funding part of this work.
References 1 W. Boerjan, J. Ralph and M. Baucher, Lignin Biosynthesis, Annu. Rev. Plant Biol. , 2003, 54 , 519 – 546, DOI: 10.1146/ annurev.arplant.54.031902.134938 . 2 H. H. Nimz, D. Robert, O. Faix and M. Nemr, Carbon-13 NMR Spectra of Lignins, 8. Structural Di ff erences between Lignins of Hardwoods, So woods, Grasses and Compression Wood, Wood Res Technol , 1981, 35 (1), 16 – 26, DOI: 10.1515/hfsg.1981.35.1.16 . 3 J. Ruwoldt. Emulsion Stabilization with Lignosulfonates, Lignin – Chem Struct Appl. , 2022, DOI: 10.5772/ intechopen.107336 . 4 J. Ruwoldt, A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces, Surfaces , 2020, 3 (4), 622 – 648, DOI: 10.3390/ surfaces3040042 . 5 I. F. Demuner, J. L. Colodette, A. J. Demuner and C. M. Jardim, Biore nery review: Wide-reaching products through kra lignin, BioResources , 2019, 14 (3), 7543 – 7581, DOI: 10.15376/biores.14.3.demuner . 6 S. Laurichesse and L. Av´erous, Chemical modi cation of lignins: Towards biobased polymers, Prog. Polym. Sci. , 2014, 39 (7), 1266 – 1290, DOI: 10.1016/ j.progpolymsci.2013.11.004 . 7 S. Shao, Z. Jin, G. Wen and K. Iiyama, Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin, Wood Sci. Technol. , 2009, 43 (7 – 8), 643 – 652, DOI: 10.1007/s00226-009-0252-7 . 8 Y. Zhao, S. Xiao, J. Yue, D. Zheng and L. Cai, E ff ect of enzymatic hydrolysis lignin on the mechanical strength and hydrophobic properties of molded ber materials, Holzforschung , 2020, 74 (5), 469 – 475, DOI: 10.1515/hf-2018- 0295 . 9 T. J. Szalaty, Ł . Klapiszewski and T. Jesionowski, Recent developments in modi cation of lignin using ionic liquids
RSCAdv. , 2023, 13 , 12529 – 12553 | 12547
© 2023 The Author(s). Published by the Royal Society of Chemistry
Made with FlippingBook Digital Proposal Creator