PAPERmaking! Vol10 Nr3 2024

RSC Advances View Article Online

Review

in room-temperature ionic liquid, Bioresour. Technol. , 2009, 100 (9), 2569 – 2574, DOI: 10.1016/j.biortech.2008.11.044 . 118 S. Fertahi, I. Bertrand, M. Amjoud, A. Oukarroum, M. Arji and A. Barakat, Properties of Coated Slow-Release Triple Superphosphate (TSP) Fertilizers Based on Lignin and Carrageenan Formulations, ACS Sustainable Chem. Eng. , 2019, 7 (12), 10371 – 10382, DOI: 10.1021/ acssuschemeng.9b00433 . 119 F. Rotondo, R. Coniglio, L. Cantera, I. Di Pascua, L. Clavijo and A. Dieste, Lignin-based coatings for controlled P- release fertilizer consisting of granulated simple superphosphate, Holzforschung , 2018, 72 (8), 637 – 643, DOI: 10.1515/hf-2017-0176 . 120 W. J. Mulder, R. J. A. Gosselink, M. H. Vingerhoeds, P. F. H. Harmsen and D. Eastham, Lignin based controlled release coatings, Ind. Crops Prod. , 2011, 34 (1), 915 – 920, DOI: 10.1016/j.indcrop.2011.02.011 . 121 C. Xiao, R. Bolton and W. L. Pan, Lignin from rice straw Kra  pulping : E ff ects on soil aggregation and chemical properties, Bioresour. Technol. , 2007, 98 , 1482 – 1488, DOI: 10.1016/j.biortech.2005.11.014 . 122 M. H. Nguyen, I. C. Hwang and H. J. Park, Enhanced photoprotection for photo-labile compounds using double-layer coated corn oil-nanoemulsions with chitosan and lignosulfonate, J. Photochem. Photobiol., B , 2013, 125 , 194 – 201, DOI: 10.1016/j.jphotobiol.2013.06.009 . 123 S. J. Gobbi, V. J. Gobbi and Y. Rocha, Requirements for selection/development of a biomaterial, Biomed. J. Sci. Technol. Res. , 2019, 14 (3), 1 – 6. 124 B. D. Ratner, The biocompatibility manifesto: Biocompatibility for the twenty-  rst century, J. Cardiovasc. Transl. Res. , 2011, 4 (5), 523 – 527, DOI: 10.1007/s12265-011- 9287-x . 125 A. Rokstad, B. Strand, T. Espevik and T. Mollnes, Biocompatibility and Biotolerability Assessment of Microspheres Using a Whole Blood Model, Micro Nanosyst. , 2013, 5 (3), 177 – 185, DOI: 10.2174/ 1876402911305030005 . 126 S. Sugiarto, Y. Leow, C. L. Tan, G. Wang and D. Kai, How far is Lignin from being a biomedical material?, Bioact. Mater. , 2022, 8 , 71 – 94, DOI: 10.1016/j.bioactmat.2021.06.023 . 127 A. Alzagameem, S. E. Klein, M. Bergs, X. Tung Do, I. Korte, S. Dohlen, C. Hüwe, J. Kreyenschmidt, B. Kamm, M. Larkins and M. Schulze, Antimicrobial activity of lignin and lignin-derived cellulose and chitosan composites against selected pathogenic and spoilage microorganisms, Polymers , 2019, 11 (4), DOI: 10.3390/ polym11040670 . 128 V. Ugartondo, M. Mitjans and M. P. Vinardell, Comparative antioxidant and cytotoxic e ff ects of lignins from di ff erent sources, Bioresour. Technol. , 2008, 99 (14), 6683 – 6687, DOI: 10.1016/j.biortech.2007.11.038 . 129 K. Lintinen, S. Luiro, P. Figueiredo, et al. , Antimicrobial Colloidal Silver-Lignin Particles via Ion and Solvent Exchange, ACS Sustainable Chem. Eng. , 2019, 7 (18), 15297 – 15303, DOI: 10.1021/acssuschemeng.9b02498 .

review, Bioresour. Technol. , 2000, 72 (2), 169 – 183, DOI: 10.1016/S0960-8524(99)00104-2 . 106 K. A. Henn, N. Forsman, T. Zou and M. O¨sterberg, Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings, ACS Appl. Mater. Interfaces , 2021, 13 (29), 34793 – 34806, DOI: 10.1021/ acsami.1c06087 . 107 M. Farooq, T. Zou, G. Riviere, M. H. Sipponen and M. O¨sterberg, Strong, Ductile, and Waterproof Cellulose Nano  bril Composite Films with Colloidal Lignin Particles, Biomacromolecules , 2019, 20 (2), 693 – 704, DOI: 10.1021/acs.biomac.8b01364 . 108 G. N. Rivi`ere, F. Pion, M. Farooq, M. H. Sipponen, H. Koivula, T. Jayabalan, P. Pandard, G. Marlaire, X. Liao, S. Baumberger and M. O¨sterberg, Toward waste valorization by converting bioethanol production residues into nanoparticles and nanocomposite  lms, Sustainable Mater. Technol. , 2021, 28 , DOI: 10.1016/ j.susmat.2021.e00269 . 109 B. Asikanius, A. S. J¨a¨askel¨ainen, H. Koivula, P. Oinonen and M. O¨sterberg, Durable Biopolymer Films From Lignin- Carbohydrate Complex Derived From a Pulp Mill Side Stream, Front. Energy Res. , 2021, 9 , DOI: 10.3389/ fenrg.2021.782545 . 110 A. Hambardzumyan, L. Foulon, N. B. Bercu, et al. , Organosolv lignin as natural gra  ing additive to improve the water resistance of  lms using cellulose nanocrystals, Chem. Eng. J. , 2015, 264 , 780 – 788, DOI: 10.1016/ j.cej.2014.12.004 . 111 A. Hambardzumyan, L. Foulon, B. Chabbert and V. Agui´e- B´eghin, Natural organic UV-absorbent coatings based on cellulose and lignin: Designed e ff ects on spectroscopic properties, Biomacromolecules , 2012, 13 (12), 4081 – 4088, DOI: 10.1021/bm301373b . 112 A. Javed, H. Ullsten, P. R¨attö and L. J¨arnström, Lignin- containing coatings for packaging materials, Nord. Pulp Pap. Res. J. , 2018, 33 (3), 548 – 556, DOI: 10.1515/npprj- 2018-3042 . 113 K. Johansson, T. Gillgren, S. Winestrand, L. J¨arnström and L. J. Jönsson, Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and  lms, J. Biol. Eng. , 2014, 8 (1), 1 – 10, DOI: 10.1186/1754-1611-8-1 . 114 K. Johansson, S. Winestrand, C. Johansson, L. J¨arnström and L. J. Jönsson, Oxygen-scavenging coatings and  lms based on lignosulfonates and laccase, J. Biotechnol. , 2012, 161 (1), 14 – 18, DOI: 10.1016/j.jbiotec.2012.06.004 . 115 S. Winestrand, L. J¨arnström and J. Leif, Jönsson. Fractionated Lignosulfonates for Laccase-Catalyzed Oxygen-Scavenging Films and Coatings, Molecules , 2021, (26), 6322. 116 L. Dong, H. Hu, F. Cheng and S. Yang, The water resistance of corrugated paper improved by lipophilic extractives and lignin in APMP e ffl uent, J. Wood Sci. , 2015, 61 (4), 412 – 419, DOI: 10.1007/s10086-015-1480-0 . 117 R. L. Wu, X. L. Wang, F. Li, H. Z. Li and Y. Z. Wang, Green composite  lms prepared from cellulose, starch and lignin

RSCAdv. , 2023, 13 , 12529 – 12553 | 12551

© 2023 The Author(s). Published by the Royal Society of Chemistry

Made with FlippingBook Digital Proposal Creator