Polymers 2024 , 16 , 110
11of 12
Data Availability Statement: The data presented in this study are available from the corresponding author upon reasonable request. Conflicts of Interest: The authors declare no conflict of interest.
References 1. Calcium Carbonate in the Paper Industry â ¢ Blessing for Coated Papermaking and Curse for Recycling. Available online: https://imisrise.tappi.org/TAPPI/Products/14/NOV/14NOV47.aspx (accessed on 22 June 2023). 2. Dalas, E.; Klepetsanis, P.G.; Koutsoukos, P.G. Calcium Carbonate Deposition on Cellulose. J. Colloid Interface Sci. 2000 , 224 , 56–62. [CrossRef] [PubMed] 3. Fimbel, P.; Siffert, B. Interaction of calcium carbonate (calcite) with cellulose fibres in aqueous medium. Colloids Surf. 1986 , 20 , 1–16. [CrossRef] 4. Guerra-Garc é s, J.; Garc í a-Negrete, C.A.; Pastor-Sierra, K.; Arteaga, G.C.; Barrera-Vargas, M.; de Haro, M.C.J.; Fern á ndez, A. Morphologically diverse CaCO 3 microparticles and their incorporation into recycled cellulose for circular economy. Mater. Today Sustain. 2022 , 19 , 100166. [CrossRef] 5. Kandirmaz, E.A.; Yenido, S.; Aydemir, C.; Karademir, A. Effect of using calcium carbonate (CaCO 3 ) in surface coating on liquid absorption of paper and some printability parameters. Cellul. Chem. Technol. 2020 , 54 , 485–493. [CrossRef] 6. Su, N. Preparation and performance of retention and drainage aid made of cationic spherical polyelectrolyte brushes. e-Polymers 2022 , 22 , 676–685. [CrossRef] 7. Salfitra, M.; Putra, A. Effect of calcium carbonate (caco3) additives on the quality of cellulose-based biodegradable plastics bacteria-polyethylene glycol (peg)of coconut water ( Cocos nucifera ). Electrolyte 2023 , 2 , 65–72. [CrossRef] 8. Watcharamul, S.; Lerddamrongchai, S.; Siripongpreda, T.; Rodtassana, C.; Nuisin, R.; Kiatkamjornwong, S. Effects of Car- boxymethyl Cellulose/Nano-Calcium Carbonate Hydrogel Amendment of Loamy Sand Soil for Maize Growth. ACS Agric. Sci. Technol. 2022 , 2 , 1071–1080. [CrossRef] 9. Zhang, Y.; Wang, Q.; Wang, C.; Wang, T. High-strain shape memory polymer networks crosslinked by SiO 2 . J. Mater. Chem. 2011 , 21 , 9073–9078. [CrossRef] 10. Roy, S.; Zhai, L.; Kim, H.C.; Pham, D.H.; Alrobei, H.; Kim, J. Tannic-Acid-Cross-Linked and TiO 2 -Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers 2021 , 13 , 228. [CrossRef] 11. Aki, D.; Ulag, S.; Unal, S.; Sengor, M.; Ekren, N.; Lin, C.C.; Yılmazer, H.; Ustundag, C.B.; Kalaskar, D.M.; Gunduz, O. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Mater. Des. 2020 , 196 , 109094. [CrossRef] 12. Onyszko, M.; Markowska-Szczupak, A.; Rakoczy, R.; Paszkiewicz, O.; Janusz, J.; Gorgon-Kuza, A.; Wenelska, K.; Mijowska, E. Few Layered Oxidized h-BN as Nanofiller of Cellulose-Based Paper with Superior Antibacterial Response and Enhanced Mechanical/Thermal Performance. Int. J. Mol. Sci. 2020 , 21 , 5396. [CrossRef] [PubMed] 13. Zeng, X.; Liu, Y.; He, R.; Li, T.; Hu, Y.; Wang, C.; Xu, J.; Wang, L.; Wang, H. Tissue paper-based composite separator using nano-SiO 2 hybrid crosslinked polymer electrolyte as coating layer for lithium ion battery with superior security and cycle stability. Cellulose 2022 , 29 , 3985–4000. [CrossRef] 14. Zhang, W.; Rhim, J.W. Titanium dioxide (TiO 2 ) for the manufacture of multifunctional active food packaging films. Food Packag. Shelf Life 2022 , 31 , 100806. [CrossRef] 15. Chen, L.; Xiao, C.; Tang, Y.; Zhang, X.; Zheng, K.; Tian, X. Preparation and properties of boron nitride nanosheets/cellulose nanofiber shear-oriented films with high thermal conductivity. Ceram. Int. 2019 , 45 , 12965–12974. [CrossRef] 16. Ghimire, P.P.; Jaroniec, M. Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities. J. Colloid Interface Sci. 2021 , 584 , 838–865. [CrossRef] [PubMed] 17. Liang, Y.; Ouyang, J.; Wang, H.; Wang, W.; Chui, P.; Sun, K. Synthesis and characterization of core–shell structured SiO 2 @YVO 4 :Yb 3+ ,Er 3+ microspheres. Appl. Surf. Sci. 2012 , 258 , 3689–3694. [CrossRef] 18. Chandraboss, V.L.; Kamalakkannan, J.; Senthilvelan, S. Synthesis of AC-Bi@SiO 2 Nanocomposite Sphere for Superior Photocat- alytic Activity Towards the Photodegradation of Malachite Green. Can. Chem. Trans. 2016 , 3 , 410–429. [CrossRef] 19. Spurr, R.A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-ray Diffractometer. Anal. Chem. 1957 , 29 , 760–762. [CrossRef] 20. Awe, A.A.; Opeolu, B.O.; Fatoki, O.S.; Ayanda, O.S.; Jackson, V.A.; Snyman, R. Preparation and characterisation of activated carbon from Vitis vinifera leaf litter and its adsorption performance for aqueous phenanthrene. Appl. Biol. Chem. 2020 , 63 , 12. [CrossRef] 21. Lahiri, S.K.; Liu, L. Fabrication of a Nanoporous Silica Hydrogel by Cross-Linking of SiO 2 -H 3 BO 3 -Hexadecyltrimethoxysilane for Excellent Adsorption of Azo Dyes from Wastewater. Langmuir 2021 , 37 , 8753–8764. [CrossRef] 22. Hsieh, Y.C.; Yano, H.; Nogi, M.; Eichhorn, S.J. An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 2008 , 15 , 507–513. [CrossRef] 23. Schenzel, K.; Fischer, S. NIR FT Raman spectroscopy—A rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose 2001 , 8 , 49–57. [CrossRef]
Made with FlippingBook Digital Proposal Creator