12
C.V.G. Esteves: Oxygen deligni fi ed fi bers as a greener alternative for tissue paper
Hartman, R.R. (1985). Mechanical treatment of pulp fi bres for property development , PhD. Appleton, USA. Jour, P., Halldén, K., and Wackerberg, E. (2013). Environmental systems analysis of alternative bleaching sequences with focus on carbon footprint. In: Proceedings of the ABTCP, the 46th ABTCP international pulp and paper congress . © 2013 ABTCP, Sao Paulo, Brazil. Joutsimo, O.P. and Asikainen, S. (2013). E ff ectof fi ber wall pore structure on pulp sheet density of softwood kraft pulp fi bers. BioResources 8: 2719 – 2737, https://doi.org/10.15376/biores.8.2.2719-2737. Kang, T. (2007). Role of external fi brillation in pulp and paper properties , PhD. Helsinki University of Technology, Espoo. Katz, S., Beatson, R.P., and Scallon, A.M. (1984). The determination of strong and weak acidic groups in sul fi tepulps. Svensk papperstidn 87: 48 – 53. Kim, J.J., Shalev, I., and Barker, R.L. (1994). Softness properties of paper towels. Tappi J . 77: 83 – 89. Kullander, J. (2012). Evaluation of furnishes for tissue manufacturing , Ph.D. Karlstad, Karlstads universitet. Lumiainen, J. (2000). Re fi ning of chemical pulp. Papermaking part 1: 86 – 122. Mai, J. (2021). Development of pulp fi ber charge in oxygen deligni fi cation of softwood , Master degree. KTH, Stockholm. Maloney, T. and Paulapuro, H. (1999). The formation of pores in the cell wall. J. Pulp Pap. Sci. 25: 430 – 436. Man, Y., Li, J., Hong, M., and Han, Y. (2020). Energy transition for the low- carbon pulp and paper industry in China. Renewable Sustainable Energy Rev. 131: 109998, https://doi.org/10.1016/j.rser.2020.109998. Mohlin, U.-B. and Alfredsson, C. (1990). Fibre deformation and its implications in pulp characterization. Nord. Pulp Pap. Res. J . 5: 172 – 179, https://doi.org/10.3183/npprj-1990-05-04-p172-179. Morais, F.P. and Curto, J.M. (2022). Challenges in computational materials modelling and simulation: a case-study to predict tissue paper properties. Heliyon 8: e09356, https://doi.org/10.1016/j.heliyon.2022.e09356. Morais, F.P., Carta, A., Amaral, M.E., and Curto, J.M. (2021). Cellulose fi ber enzymatic modi fi cation to improve the softness, strength, and absorption properties of tissue papers. BioResources 16: 846 – 861, https://doi.org/10.15376/biores.16.1.846-861. Nordström, B. (2014). Unbleached linerboard kraft pulps with di ff erent kappa number (yield) – e ff ects on tensile properties and compression strength with free or restrained drying. Nord. Pulp Pap. Res. J . 29: 462 – 467, https://doi.org/10.3183/npprj-2014-29-03-p462-467. Rebola, S.M., Azevedo, C.A., and Evtuguin, D.V. (2021). E ff ect of cooking and bleaching conditions on the properties of eucalyptus kraft fl u ff pulps. Cellulose 28: 4411 – 4426, https://doi.org/10.1007/s10570-021- 03789-8. Salem, K., Jameel, H., Lucia, L., and Pal, L. (2023). Sustainable high-yield lignocellulosic fi bers and modi fi cation technologies educing softness and strength for tissues and hygiene products for global health. Mater. Today Sustainability 22: 100342, https://doi.org/10.1016/j.mtsust.2023.100342. Schuchard, D.R. and Berg, J.C. (1991). Liquid transport in composite cellulose — superabsorbent fi ber networks. Wood Fiber Sci. : 342 – 357. Scott, W.E., Abbott, J.C., and Trosset, S. (1995). The properties of creped tissue papers. In: Properties of paper: an introduction . TAPPI, Atlanta, GA, pp. 179 – 185. Sedin, M.F., F. and Vomho ff , H. (2017). The in fl uence of absorption direction on the absorption capacity of kitchen towel. Innventia Research Programme : 2015 – 2017, Innventia Report 973. Sjöstedt, A., Wohlert, J., Larsson, P.T., and Wågberg, L. (2015). Structural changes during swelling of highly charged cellulose fi bres. Cellulose 22: 2943 – 2953, https://doi.org/10.1007/s10570-015-0701-4.
Buchert, J., Bergnor, E., Lindblad, G., Viikari, L., and Ek, M. (1997). Signi fi cance of xylan and glucomannan in the brightness reversion of kraft pulps. Tappi J . 80: 165 – 171. Chai, X.-S., Hou, Q., and Zhu, J. (2003). Carboxyl groups in wood fi bers. 2. The fate of carboxyl groups during alkaline deligni fi cation and its application for fi ber yield prediction in alkaline pulping. Ind. Eng. Chem. Res. 42: 5445 – 5449, https://doi.org/10.1021/ie0209733. Dang, Z., Elder, T., and Ragauskas, A.J. (2006). In fl uence of kraft pulping on carboxylate content of softwood kraft pulps. Ind. Eng. Chem. Res. 45: 4509 – 4516, https://doi.org/10.1021/ie060203h. de Assis, T., Pawlak, J., Pal, L., Jameel, H., Reisinger, L.W., Kavalew, D., Campbell, C., Pawlowska, L., and Gonzalez, R.W. (2020). Comparison between uncreped and creped handsheets on tissue paper properties using a creping simulator unit. Cellulose 27: 5981 – 5999, https://doi. org/10.1007/s10570-020-03163-0. de Assis, T., Reisinger, L.W., Pal, L., Pawlak, J., Jameel, H., and Gonzalez, R.W. (2018). Understanding the e ff ect of machine technology and cellulosic fi bers on tissue properties – A review. BioResources 13: 4593 – 4629, https://doi.org/10.15376/biores.13.2.deassis. Debnath, M., Salem, K.S., Naithani, V., Musten, E., Hubbe, M.A., and Pal, L. (2021). Soft mechanical treatments of recycled fi bers using a high- shear homogenizer for tissue and hygiene products. Cellulose 28: 7981 – 7994, https://doi.org/10.1007/s10570-021-04024-0. Esteves, C.V. (2022). Pulp strength enhancement by oxygen deligni fi cation ,PhD Compilation. KTH Royal Institute of Technology, Stockholm. Esteves, C.V., Brännvall, E., Östlund, S., and Sevastyanova, O. (2020). Evaluating the potential to modify pulp and paper properties through oxygen deligni fi cation. ACSOmega 5: 13703 – 13711, https://doi.org/10. 1021/acsomega.0c00869. Esteves, C.V., Sevastyanova, O., Östlund, S., and Brännvall, E. (2021a). Di ff erences and similarities between kraft and oxygen deligni fi cation of softwood fi bers: e ff ects on chemical and physical properties. Cellulose 28: 3149 – 3167, https://doi.org/10.1007/s10570-021-03713-0. Esteves, C.V., Sevastyanova, O., Östlund, S., and Brännvall, E. (2021b). Di ff erences and similarities between kraft and oxygen deligni fi cation of softwood fi bers: e ff ects on mechanical properties. Cellulose 28: 3775 – 3788, https://doi.org/10.1007/s10570-021-03781-2. Feber, D., Granskog, A., Lingqvist, O., and Nordigården, D. (2020). Sustainability in packaging: inside the minds of US consumers, Retrieved 08-2023, 2023, Available from: https://www.mckinsey.com/ industries/paper-forest-products-and-packaging/our-insights/ sustainability-in-packaging-inside-the-minds-of-us-consumers. Fi š erová, M., Gigac, J., Stankovska, M., and Opalena, E. (2019). In fl uenceof bleached softwood and hardwood kraft pulps on tissue paper properties. Cell. Chem. Technol. 53: 469 – 477, https://doi.org/10.35812/ cellulosechemtechnol.2019.53.47. Gharehkhani, S., Sadeghinezhad, E., Kazi, S.N., Yarmand, H., Badarudin, A., Safaei, M.R., and Zubir, M.N.M. (2015). Basic e ff ects of pulp re fi ningon fi ber properties – areview. Carbohyd. Polym. 115: 785 – 803, https://doi. org/10.1016/j.carbpol.2014.08.047. Gigac, J. and Fi š erová, M. (2008). In fl uence of pulp re fi ning on tissue paper properties. Tappi J . 7: 27 – 32, https://doi.org/10.32964/tj7.8.27. Gunnarsson, M. (2012) Decreased wet strength in retorted liquid packaging board. Master , Chalmers University of Technology.Göteborg, Sweden. Haller, K., Lee, J., and Cheung, J. (2020). Meet the 2020 consumers driving change . IBM Institute for Business Value, Available online: https://www.ibm.com/downloads/cas/EXK4XKX8 (Accessed on 29 March 2021).
Made with FlippingBook Digital Proposal Creator