PAPERmaking! Vol9 Nr1 2023

Energies 2023 , 16 , 746

15of 18

References 1. International Energy Agency (IEA). Tracking Industry 2021. 2022. Available online: https://www.iea.org/reports/tracking- industry-2021 (accessed on 8 December 2021). 2. International Energy Agency (IEA). World Energy Outlook 2021—Revised Version. 2022. Available online: https://www.iea.org/ reports/world-energy-outlook-2021 (accessed on 12 February 2022). 3. Masson-delmotte, V.P.; Zhai, H.O.; Pörtner, D.; Roberts, J.; Skea, P.R.; Shukla, A.; Pirani, W.; Moufouma-Okia, C.; P é an, R.; Pidcock, S.; et al. Summary for Policymakers, in Global Warming of 1.5 ◦ C, An IPCC Special Report on the Impacts of Global Warming of 1.5 ◦ C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, IPCC. 2018, pp. 1–23. Available online: https://www.ipcc.ch/sr15/chapter/spm/ (accessed on 12 February 2022). 4. European Commission. Delivering the European Green Deal. 2021. Available online: https://ec.europa.eu/info/strategy/ priorities-2019-2024/european-green-deal/delivering-european-green-deal_en (accessed on 21 March 2022). 5. European Commission. 2030 Climate & Energy Framework. 2021. Available online: https://ec.europa.eu/clima/eu-action/ climate-strategies-targets/2030-climate-energy-framework_en (accessed on 5 April 2022). 6. European Commission. Energy Efficiency Directive. 2021. Available online: https://ec.europa.eu/energy/topics/energy- efficiency/targets-directive-and-rules/energy-efficiency-directive_en (accessed on 5 April 2022). 7. International Energy Agency (IEA). Energy Technology Perspectives 2020. 2020. Available online: https://www.iea.org/reports/ energy-technology-perspectives-2020 (accessed on 13 February 2022). 8. International Energy Agency (IEA). Pulp and Paper. 2022. Available online: https://www.iea.org/fuels-and-technologies/pulp- paper (accessed on 2 April 2022). 9. Klugman, S.; Karlsson, M.; Moshfegh, B. A Scandinavian chemical wood-pulp mill. Part 2. International and model mills comparison. Appl. Energy 2007 , 84 , 340–350. [CrossRef] 10. Peng, L.; Zeng, X.; Wang, Y.; Hong, G. Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry. Energy Policy 2015 , 80 , 65–75. [CrossRef] 11. Kong, L.; Price, L.; Hasanbeigi, A.; Liu, H.; Li, J. Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China. Appl. Energy 2013 , 102 , 1334–1342. [CrossRef] 12. Fleiter, T.; Fehrenbach, D.; Worrell, E.; Eichhammer, W. Energy efficiency in the German pulp and paper industry—A model-based assessment of saving potentials. Energy 2012 , 40 , 84–99. [CrossRef] 13. Kuparinen, K.; Vakkilainen, E. Green pulp mill: Renewable alternatives to fossil fuels in lime kiln operations. BioResources 2017 , 12 , 4031–4048. [CrossRef] 14. Laurijssen, J.; Faaij, A.; Worrell, E. Energy conversion strategies in the European paper industry—A case study in three countries. Appl. Energy 2012 , 98 , 102–113. [CrossRef] 15. Onarheim, K.; Santos, S.; Kangas, P.; Hankalin, V. Performance and costs of CCS in the pulp and paper industry part 1: Performance of amine-based post-combustion CO 2 capture. Int. J. Greenh. Gas Control 2017 , 59 , 58–73. [CrossRef] 16. Kuparinen, K. Transforming the Chemical Pulp Industry—From an Emitter to a Source of Negative CO2 Emissions. LUT University . 2019. Available online: https://lutpub.lut.fi/handle/10024/160057 (accessed on 13 January 2022). 17. Mäki, E.; Saastamoinen, H.; Melin, K.; Matschegg, D.; Pihkola, H. Drivers and barriers in retrofitting pulp and paper industry with bioenergy for more efficient production of liquid, solid and gaseous biofuels: A review. Biomass Bioenergy 2021 , 148 , 106036. [CrossRef] 18. Confederation of European Paper Industries (CEPI). Key Statistics 2020. 2021. Available online: https://www.cepi.org/key- statistics-2020/ (accessed on 13 January 2022). 19. European Commission. EU Reference Scenario 2020. 2021. Available online: https://energy.ec.europa.eu/data-and-analysis/ energy-modelling/eu-reference-scenario-2020_en (accessed on 13 January 2022). 20. Trading Economics. EU Carbon Permits. 2022. Available online: https://tradingeconomics.com/commodity/carbon (accessed on 18 August 2022). 21. Lipiäinen, S.; Kuparinen, K.; Sermyagina, E.; Vakkilainen, E. Pulp and paper industry in energy transition: Towards energy- efficient and low carbon operation in Finland and Sweden. Sustain. Prod. Consum. 2021 , 29 , 421–431. [CrossRef] 22. Kähkönen, S.; Vakkilainen, E.; Laukkanen, T. Impact of structural changes on energy efficiency of Finnish pulp and paper industry. Energies 2019 , 12 , 3689. [CrossRef] 23. Kuparinen, K.; Lipiäinen, S.; Vakkilainen, E.; Laukkanen, T. Effect of biomass-based carbon capture on the sustainability and economics of pulp and paper production in the Nordic mills. Environ. Dev. Sustain. 2021 , 23 , 13707–13730. [CrossRef] 24. Food and Agriculture Organization of the United Nations (FAO). Forestry Production and Trade. 2022. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 21 January 2022). 25. Farla, J.; Blok, K.; Schipper, L. Energy efficiency developments in the pulp and paper industry: A cross-country comparison using physical production data. Energy Policy 1997 , 25 , 745–758. [CrossRef] 26. Regional State Administrative Agency Environmental Permits. 2022. Available online: https://avi.fi/en/services/businesses/ licence-notices-and-applications/water-and-the-environment/environmental-permits (accessed on 7 October 2022).

Made with FlippingBook - professional solution for displaying marketing and sales documents online