Energies 2023 , 16 , 746
16of 18
27. Vakkilainen, E.; Kivistö, A. Fossil Fuel Replacement in the Pulp Mills, LUT University. 2008. Available online: https://lutpub.lut. fi/bitstream/handle/10024/149415/BSMax_Report_Final4.pdf?sequence=1 (accessed on 20 December 2022). 28. Lipiäinen, S.; Kuparinen, K.; Vakkilainen, E. Effect of polysulfide pulping process on the energy balance of softwood and hardwood kraft pulp mills. Nord. Pulp Pap. Res. J. 2021 , 36 , 570–581. [CrossRef] 29. Statistics Finland. Fuel Classification. 2022. Available online: https://www.stat.fi/tup/khkinv/khkaasut_polttoaineluokitus.html (accessed on 11 February 2022). 30. United States Environmental Protection Agency (EPA). GHGRP Pulp and Paper. 2021. Available online: https://www.epa.gov/ ghgreporting/ghgrp-pulp-and-paper#2019-subsector (accessed on 5 April 2022). 31. Government of Canada. Industrial GHG Emissions by Industry–Including Electricity-Related Emissions. 2020. Available online: https://oee.nrcan.gc.ca/corporate/statistics/neud/dpa/showTable.cfm?type=HB§or=agg&juris=00&rn=3&page=3 (accessed on 5 April 2022). 32. Fisher, R. Carbon Emissions in the Pulp and Paper Industry. 2013. Available online: https://www.tappi.org/content/ enewsletters/ahead/2013/issues/2013-09-18.html (accessed on 5 April 2022). 33. Man, Y.; Li, J.; Hong, M.; Han, Y. Energy transition for the low-carbon pulp and paper industry in China. Renew. Sustain. Energy Rev. 2020 , 131 , 109998. [CrossRef] 34. Yang, F.; Meerman, J.C.; Faaij, A.P.C. Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options. Renew. Sustain. Energy Rev. 2021 , 144 , 111028. [CrossRef] 35. Miner, R.; Upton, B. Methods for estimating greenhouse gas emissions from lime kilns at kraft pulp mills. Energy 2002 , 27 , 729–738. [CrossRef] 36. European Environment Agency (EEA). Bubble Policy (Emissions Trading). 2022. Available online: https://www.eea.europa.eu/ help/glossary/gemet-environmental-thesaurus/bubble-policy-emissions-trading (accessed on 20 April 2022). 37. RISI. Direct Manufacturing Cost Structure of the European Pulp & Paper Industry in 2017 ; 4th Quarter; RISI: Boston, MA, USA, 2017. 38. European Commission. EU Biodiversity Strategy for 2030: Bringing Nature Back into our Lives. 2002. Available on- line: https://op.europa.eu/en/publication-detail/-/publication/31e4609f-b91e-11eb-8aca-01aa75ed71a1 (accessed on 16 August 2022). 39. European Paper Recycling Council (EPRC). European Declaration on Paper Recycling 2021–2030. 2022. Available online: https://www.cepi.org/press-release-the-paper-value-chain-is-ready-to-take-circularity-to-a-new-level-with-2030-recycling- rate-target-%EF%BF%BC/ (accessed on 16 August 2022). 40. UPM Biochemicals Building a State-of-the-Art Biorefinery in Leuna. 2022. Available online: https://www.upmbiochemicals. com/about-upm-biochemicals/biorefinery-leuna/ (accessed on 15 December 2022). 41. Worrell, E.; Bernstein, L.; Roy, J.; Price, L.; Harnisch, J. Industrial energy efficiency and climate change mitigation. Energy Effic. 2009 , 2 , 109–123. [CrossRef] 42. Moya, J.A.; Pavel, C.C. Energy Efficiency and GHG Emissions: Prospective Scenarios for the Pulp and Paper Industry ; Publications Office of the European Union: Luxembourg, 2018; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC11165 2 (accessed on 15 February 2022). 43. Confederation of European Paper Industries (CEPI). Investing in Europe for Industry Transformation: 2050 Roadmap to a Low-Carbon Bioeconomy. 2017. Available online: https://www.cepi.org/investing-in-europe-for-industry-transformation-2050 -roadmap-to-a-low-carbon-bioeconomy/ (accessed on 16 August 2022). 44. Confederation of European Paper Industries (CEPI). Two Team Project ; Confederation of European Paper Industries (CEPI): Brussels, Belgium, 2013. 45. Carlson, E.; Heikkinen, P. Energian Käyttö Suomen Massa—Ja Paperiteollisuudessa, Ostosähkön Hintavertailu Eräissä Euroopan Maissa ; Energy Usage in Finnish Pulp and Paper Industry, Comparison of Electricity Prices in Certain European Countries; Oy Keskuslaboratorio: Espoo, Finland, 1998. (In Finnish) 46. Pöyry. Suomen Metsäteollisuus 2015–2035 ; The Finnish Forest Industry 2015–2035; Pöyry: Helsinki, Finland, 2016. 47. Stenqvist, C. Industrial Energy Efficiency Improvement: The Role of Policy and Evaluation. Ph.D. Thesis, Lund University, Lund, Sweden, 2013. 48. Thollander, P.; Ottosson, M. An energy efficient Swedish pulp and paper industry—Exploring barriers to and driving forces for cost-effective energy efficiency investments. Energy Effic. 2008 , 1 , 21–34. [CrossRef] 49. Ericsson, K.; Nilsson, L.J. Climate Innovations in the Paper Industry: Prospects for Decarbonization. 2018. Available online: https://portal.research.lu.se/en/publications/climate-innovations-in-the-paper-industry-prospects-for-decarboni (accessed on 16 August 2022). 50. International Renewable Energy Agency (IRENA). Bioenergy from Finnish Forests: Sustainable, Efficient and Modern Use of Wood. 2018. Available online: https://www.irena.org/publications/2018/mar/bioenergy-from-finnish-forests (accessed on 14 April 2022). 51. Confederation of European Paper Industries (CEPI). The Forest Fibre Industry. 2011. Available online: https://www.cepi.org/ the-forest-fibre-industry-2050-roadmap-to-a-low-carbon-bio-economy/ (accessed on 16 August 2022).
Made with FlippingBook - professional solution for displaying marketing and sales documents online