PAPERmaking! Vol9 Nr1 2023

Energies 2023 , 16 , 746

17of 18

52. FuelCellsWorks. German Paper Mill Manufacturer Relying on Hydrogen. 2022. Available online: https://fuelcellsworks.com/ news/german-paper-mill-manufacturer-relying-on-hydrogen/ (accessed on 18 December 2022). 53. Svensson, E.; Wiertzema, H.; Harvey, S. Potential for negative emissions by carbon capture and storage from a novel electric plasma calcination process for pulp and paper mills. Front. Clim. 2021 , 3 , 129. [CrossRef] 54. Francey, S.; Tran, H.; Jones, A. Current status of alternative fuel use in lime kilns. Tappi J. 2009 , 8 , 33–39. 55. Obrist, M.D.; Kannan, R.; Schmidt, T.J.; Kober, T. Long-term energy efficiency and decarbonization trajectories for the Swiss pulp and paper industry. Sustain. Energy Technol. Assess. 2022 , 52 , 101937. [CrossRef] 56. Vakkilainen, E.; Kaikko, J.; Hamaguchi, M. Once-Through and Reheater Recovery Boiler–Concept Studies ; LUT University Research Report: Lappeenranta, Finland, 2010. 57. Ericsson, K.; Nilsson, L.J.; Nilsson, M. New energy strategies in the Swedish pulp and paper industry-The role of national and EU climate and energy policies. Energy Policy 2011 , 39 , 1439–1449. [CrossRef] 58. Valmet. XXL Size Recovery Boilers–Present Status and Future Prospects. 2017. Available online: https://www.valmet.com/ media/articles/up-and-running/new-technology/VPXXLRB/ (accessed on 14 April 2022). 59. European Environment Agency (EEA). CO 2 Emission Intensity. 2020. Available online: https://www.eea.europa.eu/data-and- maps/daviz/co2-emission-intensity-5 (accessed on 20 April 2022). 60. Hamaguchi, M.; Vakkilainen, E.; Ryder, P. The impact of lignin removal on the dimensioning of eucalyptus pulp mills. Appita J. 2011 , 64 , 433–439. 61. Palgan, Y.V.; Mccormick, K. Biorefineries in Sweden: Perspectives on the opportunities, challenges and future. Biofuels Bioprod. Bioref. 2016 , 10 , 523–533. [CrossRef] 62. International Energy Agency (IEA). Net Zero by 2050—A Roadmap for the Global Energy Sector. 2021. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 23 February 2022). 63. Möllersten, K.; Gao, L.; Yan, J.; Obersteiner, M. Efficient energy systems with CO 2 capture and storage from renewable biomass in pulp and paper mills. Renew. Energy 2004 , 29 , 1583–1598. [CrossRef] 64. Jönsson, J.; Berntsson, T. Analysing the potential for implementation of CCS within the European pulp and paper industry. Energy 2012 , 44 , 641–648. [CrossRef] 65. Onarheim, K.; Santos, S.; Kangas, P.; Hankalin, V. Performance and cost of CCS in the pulp and paper industry part 2: Economic feasibility of amine-based post-combustion CO 2 capture. Int. J. Greenh. Gas Control 2017 , 66 , 60–75. [CrossRef] 66. Leeson, D.; Mac Dowell, N.; Shah, N.; Petit, C.; Fennell, P.S. A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. Int. J. Greenh. Gas Control 2017 , 61 , 71–84. [CrossRef] 67. Kuparinen, K.; Vakkilainen, E.; Tynjälä, T. Biomass-based carbon capture and utilization in kraft pulp mills. Mitig. Adapt. Strateg. Glob. Chang. 2019 , 24 , 1213–1230. [CrossRef] 68. Onarheim, K.; Garðarsd ò ttir, S.; Mathisen, A.; Nord, L.; Berstad, D. Industrial Implementation of Carbon Capture in Nordic Industry Sectors. 2015. Available online: https://www.sintef.no/en/publications/publication/1308897/ (accessed on 12 March 2022). 69. Hektor, E.; Berntsson, T. Future CO 2 removal from pulp mills–Process integration consequences. Energy Convers. Manag. 2007 , 48 , 3025–3033. [CrossRef] 70. Teir, S.; Tsupari, E.; Arasto, A.; Koljonen, T.; Kärki, J.; Lehtilä, A.; Kujanpää, L.; Aatos, S.; Nieminen, M. Prospects for application of CCS in Finland. Energy Procedia 2011 , 4 , 6174–6181. [CrossRef] 71. McGrail, B.P.; Freeman, C.J.; Brown, C.F.; Sullivan, E.C.; White, S.K.; Reddy, S.; Garber, R.D.; Tobin, D.; Gilmartin, J.J.; Steffensen, E.J. Overcoming business model uncertainty in a carbon dioxide capture and sequestration project: Case study at the Boise White Paper Mill. Int. J. Greenh. Gas Control 2012 , 9 , 91–102. [CrossRef] 72. Onarheim, K.; Mathisen, A.; Arasto, A. Barriers and opportunities for application of CCS in Nordic industry-A sectorial approach. Int. J. Greenh. Gas Control 2015 , 36 , 93–105. [CrossRef] 73. Fridahl, M.; Lehtveer, M. Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers. Energy Res. Soc. Sci. 2018 , 42 , 155–165. [CrossRef] 74. Santos, M.P.S.; Manovic, V.; Hanak, D.P. Unlocking the potential of pulp and paper industry to achieve carbon-negative emissions via calcium looping retrofit. J. Clean. Prod. 2021 , 280 , 124431. [CrossRef] 75. Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the transport sector: A review of production costs. Renew. Sustain. Energy Rev. 2018 , 81 , 1887–1905. [CrossRef] 76. Inkeri, E. Modelling of component dynamics and system integration in power-to-gas process, Lappeenranta-Lahti University of Technology LUT. 2021. Available online: https://lutpub.lut.fi/handle/10024/163488 (accessed on 14 April 2022). 77. Armstrong, K.; Berger, A.H.; Hansson, J. The Potential for electrofuels Production in Sweden Utilizing Fossil and Biogenic CO 2 Point sources. Front. Energy Res. 2017 , 5 , 1–12. [CrossRef] 78. European Environment Agency (EEA). Final Energy Consumption in Europe by Mode of Transport. 2021. Available online: https: //www.eea.europa.eu/data-and-maps/indicators/transport-final-energy-consumption-by-mode/assessment-10 (accessed on 11 March 2022).

Made with FlippingBook - professional solution for displaying marketing and sales documents online