Fibers 2025 , 13 , 23
20of 22
59. Clausen, C.A.; Smith, R.L. Removal of CCA from treated wood by oxalic acid extraction, steam explosion and bacterial fermentation. J. Ind. Microbiol. Biotechnol. 1998 , 20 , 251–257. [CrossRef] 60. Kartal, S.N.; Clausen, C.A. Leachability and decay resistance of particleboard made from acid extracted and bioremediated CCA-treated wood. Int. Biodeterior. Biodegrad. 2001 , 47 , 183–191. [CrossRef] 61. Coudert, L.; Blais, J.-F.; Mercier, G.; Cooper, P.; Gastonguay, L.; Morris, P.; Janin, A.; Reynier, N. Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process. J. Hazard. Mater. 2013 , 261 , 277–285. [CrossRef] [PubMed] 62. Hill, C.A.S. An Introduction to Sustainable Resource Use ; Earth Scan: London, UK, 2011. 63. Vis, M.; Mantau, U.; Allen, B. Study on the Optimised Cascading Use of Wood ; Publications Office: Brussels, Belgium, 2016. 64. Hill, C.; Norton, A.; Kutnar, A. Environmental impacts of wood composites and legislative obligations. In Wood Composites ; Ansell, M.P., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 311–333. 65. Breidenbach, J.; Rose, C.M.; Quinn, P.; Stegemann, J.A. Cascade Up: Extending the life of reclaimed solid wood through reuse in the manufacture of mass timber products. In Proceedings of the WSE 2024, Edinburgh, UK, 23–24 October 2024. 66. Fu, Q.; Zhang, B.; Wang, X.-M.; Cloutier, A.; Rousiere, F.; Bouffard, J.F. Thermo-hydrolytically recycling of urea-formaldehyde resin-bonded particleboard laminated particleboards. BioResources 2022 , 17 , 647–6859. [CrossRef] 67. Gibier, M.; Sadeghisadeghabad, M.; Girods, P.; Zoulalian, A.; Rogaume, Y. Furniture wood waste depollution through hydrolysis under pressurized water steam: Experimental work and kinetic modelization. J. Hazard. Mater. 2022 , 436 , 129126. [CrossRef] [PubMed] 68. Savov, V.; Antov, P.; Panchev, C.; Lubis, M.A.R.; Taghiyari, H.R.; Lee, S.H.; Krišt’ák, L’.; Todorova, M. The impact of hydrolysis regime on the physical and mechanical characteristics of medium-density fibreboards manufactured with recycled wood fibres. Fibers 2023 , 11 , 103. [CrossRef] 69. Kearley, V.; Goroyias, G. Wood panel recycling at a semi industrial scale. In Proceedings of the 8th European Panel Products Symposium, Llandudno, UK, 13–15 October 2004; pp. 1–18. 70. Bartlett, C.; Balarin, L. MDF Recycling—The commercial reality. In Proceedings of the International Panel Products Symposium 2023, Llandudno, UK, 3–4 October 2023; pp. 13–14. 71. Unilin. World First: A Second Life for MDF and HDF Panels with Our Brand New Recycling Technology. 2021. Available online: https://www.unilinpanels.com/en/blog/recycling-mdf-hdf-new-technology (accessed on 20 December 2024). 72. Hong, M.-K.; Lubis, M.A.R.; Park, B.D.; Sohn, C.H.; Roh, J. Effects of surface laminate type and fiber content on properties of three-layer medium density fibreboard. Wood Mater. Sci. Eng. 2018 , 15 , 163–171. [CrossRef] 73. Amarasinghe, I.T.; Qian, Y.; Gunawardena, T.; Mendis, P.; Belleville, B. Composite panels from wood waste: A detailed review of processes, standards, and applications. J. Compos. Sci. 2024 , 8 , 417. [CrossRef] 74. Gov.uk. Biomass Strategy 2023. Available online: https://www.gov.uk/government/publications/biomass-strategy (accessed on 20 December 2024). 75. Rose, C.M.; Bergsagel, D.; Dufresne, T.; Unubreme, E.; Lyu, T.; Duffour, P.; Stegemann, J.A. Cross-Laminated Secondary Timber: Experimental Testing and Modelling the Effect of Defects and Reduced Feedstock Properties. Sustainability 2018 , 10 , 4118. [CrossRef] 76. Llana, D.F.; Iniguez-Gonzalez, G.; de Arana-Fernandez, M.; Ui Chulain, C.; Harte, A.M. Recovered wood as raw material for structural timber products. Characteristics, situation and study cases: Ireland and Spain. In Proceedings of the 2020 Society of Wood Science and Technology International Convention, Online, 12–15 July 2020; pp. 117–123. 77. Anon. W Howard and MDF Recovery Agree UK and Ireland Licensing Deal. 2023. Available online: https://www.mdfrecovery. co.uk/w-howard-and-mdf-recovery-agree-uk-and-ireland-licencing-deal/ (accessed on 20 December 2024). 78. Cetiner, I.; Shear, A.D. Wood waste as an alternative thermal insulation for buildings. Energy Build. 2018 , 168 , 374–384. [CrossRef] 79. Lafond, C.; Blanchet, P. Technical performance overview of bio-based insulation materials compared to expanded polystyrene. Buildings 2020 , 10 , 81. [CrossRef] 80. Spear, M.J.; Eder, A.; Carus, M. Wood polymer composites. In Wood Composites ; Ansell, M.P., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 195–249. 81. Migneault, S.; Koubaa, A.; Perre, P. Effect of fiber origin, proportion, and chemical composition on the mechanical and physical properties of wood-plastic composites. J. Wood Chem. Technol. 2014 , 34 , 241–261. [CrossRef] 82. Sommerhuber, P.F.; Welling, J.; Krause, A. Substitution potential of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites. Waste Manag. 2015 , 46 , 76–85. [CrossRef] [PubMed] 83. Chaharmahali, M.; Mirbagheri, J.; Tajvidi, M.; Najafi, S.K.; Mirbagheri, Y. Mechanical and Physical Properties of Wood-Plastic Composite Panels. J. Reinf. Plast. Compos. 2010 , 29 , 310–319. [CrossRef] 84. Bütün, F.Y.; Sauerbier, P.; Militz, H.; Mai, C. The effect of fibreboard (MDF) disintegration technique on wood polymer composites (WPC) produced with recovered wood particles. Compos. Part A 2019 , 118 , 312–316. [CrossRef]
Made with FlippingBook interactive PDF creator