Fibers 2025 , 13 , 23
21of 22
85. English, B.; Clemons, C.; Stark, N.; Schneider, J.P. Waste wood-derived fillers for plastics. In Proceedings of the Fourth International Conference on Woodfiber Plastic Composites, Madison, WI, USA, 12–14 May 1997; pp. 309–324. 86. Dalu, M.; Temiz, A.; Altunas, E.; Demirel, G.K.; Aslan, M. Characterization of tanalith E treated wood flour filled polylactic acid composites. Polym. Test. 2019 , 76 , 376–384. [CrossRef] 87. Ntalos, G.; Papdopoulos, A. Mechanical physical properties of cement bonded, O.S.B. In Proceedings of the Conference co- organized by COST Action E44–E49 Wood Resources and Panel Properties, Valencia, Spain, 12–13 June 2006; pp. 315–319. 88. Frybort, S.; Mauritz, R.; Teischinger, A.; Muller, U. Cement Bonded Composites—A Mechanical Review. BioResources 2008 , 3 , 602–626. [CrossRef] 89. Soroushian, P.; Won, J.-P.; Hassan, M. Durability and microstructure analysis of CO 2 -cured cement-bonded wood particleboard. Cem. Concr. Compos. 2013 , 41 , 34–44. [CrossRef] 90. Wolfe, R.W.; Gjinolli, A. Cement-bonded wood composites as an engineering material. In Proceedings of the Use of Recycled Wood and Paper in Building Applications, Madison, WI, USA, 9–11 September 1996. 91. Papadopoulos, A.N.; Ntalos, G.A.; Kakaras, I. Mechanical and physical properties of cement bonded OSB. Holz Roh Werkst. 2006 , 64 , 517–518. [CrossRef] 92. Miyatake, A.; Fiujii, T.; Hiramatsu, Y.; Abe, H.; Tonosaki, M. Manufacture of wood strand-cement composite for structural use. In Proceedings of the Wood-Cement Composites in the Asia-Pacific Region, Canberra, Australia, 10 December 2000; pp. 148–152. 93. Solo-Gabriele, H.; Townsend, T. Disposal practices and management alternatives for CCA-treated wood waste. Waste Manag. Res. 1999 , 17 , 378–389. [CrossRef] 94. Zhou, Y.; Kamdem, D.P. Effect of cement/wood ration on the properties of cement-bonded particleboard using CCA-treated wood removed from service. For. Prod. J. 2002 , 52 , 77–81. 95. Qi, H.; Cooper, P.A.; Wan, H. Effect of carbon dioxide injection on production of wood cement composites from waste medium density fibreboard (MDF). Waste Manag. 2006 , 26 , 509–515. [CrossRef] [PubMed] 96. Huang, C.; Cooper, P.A. Cement-bonded particleboards using CCA-treated wood removed from service. For. Prod. J. 2000 , 50 , 49–56. 97. Schmidt, R.; Marsh, R.; Balatinecz, J.J.; Cooper, P.A. Increased wood-cement compatibility of chromate-treated wood. For. Prod. J. 1994 , 44 , 44–46. 98. Li, M.; Nicolas, V.; Khelifa, M.; El Ganaoui, M.; Fierro, V.; Celzard, V. Modelling the hygrothermal behaviour of cement-bonded wood composite panels as permanent formwork. Ind. Crops Prod. 2019 , 142 , 111784. [CrossRef] 99. Wang, L.; Chen, S.S.; Tseng, D.C.W.; Poon, C.S.; Shih, K. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr. Build. Mater. 2016 , 125 , 316–325. [CrossRef] 100. Berger, F.; Gauvin, F.; Brouwers, H.J.H. The recycling potential of wood waste into wood-wool/cement composite. Constr. Build. Mater. 2020 , 260 , 119786. [CrossRef] 101. Caldas, L.R.; Saraiva, A.B.; Lucena, A.F.P.; Da Gloria, M.Y.; Santos, A.S.; Filho, R.D.T. Building materials in a circular economy: The case of wood waste as CO 2 -sink in bio concrete. Resour. Conserv. Recycl. 2021 , 166 , 105346. [CrossRef] 102. Ince, C.; Tayancli, S.; Deogar, S. Recycling waste wood in cement mortars towards the regeneration of sustainable environment. Constr. Build. Mater. 2021 , 299 , 123891. [CrossRef] 103. Grishkewich, N.; Mohammed, N.; Tang, J.; Tam, K.C. Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interface Sci. 2017 , 29 , 32–45. [CrossRef] 104. Irle, M.; Privat, F.; Couret, L.; Belloncle, C.; Déroubaix, G.; Bonnin, E.; Cathala, B. Advanced recycling of post-consumer solid wood and MDF. Wood Mater. Sci. Eng. 2019 , 14 , 19–23. [CrossRef] 105. Couret, L.; Irle, M.; Belloncle, C.; Cathala, B. Extraction and characterization of cellulose nanocrystals from post-consumer wood fiberboard waste. Cellulose 2017 , 24 , 2125–2137. [CrossRef] 106. Kim, J.-Y.; Oh, S.; Park, Y.K. Overview of biochar production from preservative treated wood with detailed analysis of biochar characteristics, heavy metal behaviours and their ecotoxicity. J. Hazard. Mater. 2020 , 384 , 121356. [CrossRef] [PubMed] 107. Medved, S.; Irle, M.; Kržišnik, D.; Humar, M. Partial liquefaction as a method for remediation of recovered wood. In Proceedings of the International Panel Products Symposium 2015, Llandudno, UK, 7–8 October 2015; pp. 97–104. 108. Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006 , 20 , 848–889. [CrossRef] 109. Wang, G.; Dai, Y.; Yang, H.; Xiong, Q.; Wang, K.; Zhou, J.; Li, Y.; Wang, S. A review of recent advances in biomass pyrolysis. Energy Fuels 2020 , 34 , 15557–15578. [CrossRef] 110. Kerr, A. Wood recycling at a crossroads. Wood Based Panels Int. 2024 , 44 , 42. 111. European Council. Council greenlights EU Certification Framework for Permanent Carbon Removals, Carbon Farming and Carbon Storage in Products. 2024. Available online: https://www.consilium.europa.eu/en/press/press-releases/2024/11/ 19/council-greenlights-eu-certification-framework-for-permanent-carbon-removals-carbon-farming-and-carbon-storage-in- products/ (accessed on 16 December 2024).
Made with FlippingBook interactive PDF creator