PAPERmaking! Vol11 Nr1 2025

Coatings 2025 , 15 , 214

13of 14

27. Kunam, P.K.; Ramakanth, D.; Akhila, K.; Gaikwad, K.K. Bio-based materials for barrier coatings on paper packaging. Biomass Convers. Biorefinery 2024 , 14 , 12637–12652. [CrossRef] [PubMed] 28. Sundar, N.; Kumar, A.; Pavithra, A.; Ghosh, S. Studies on semi-crystalline poly lactic acid (PLA) as a hydrophobic coating material on kraft paper for imparting barrier properties in coated abrasive applications. Prog. Org. Coat. 2020 , 145 , 105682. 29. Abdenour, C.; Eesaee, M.; Stuppa, C.; Chabot, B.; Barnabé, S.; Bley, J.; Tolnai, B.; Guy, N.; Nguyen-Tri, P. Water vapor and air barrier performance of sustainable paper coatings based on PLA and xanthan gum. Mater. Today Commun. 2023 , 36 , 106626. [CrossRef] 30. Belletti, G.; Buoso, S.; Ricci, L.; Guillem-Ortiz, A.; Aragón-Gutiérrez, A.; Bortolini, O.; Bertoldo, M. Preparations of poly (lactic acid) dispersions in water for coating applications. Polymers 2021 , 13 , 2767. [CrossRef] [PubMed] 31. Vähä-Nissi, M.; Laine, C.; Talja, R.; Mikkonen, H.; Hyvärinen, S.; Harlin, A. Aqueous dispersions from biodegradable/renewable polymers. In Proceedings of the TAPPI PLACE 2010 Conference, Albuquerque, NM, USA, 18–21 April 2010; pp. 18–21. 32. Mehtiö, T.; Anghelescu-Hakala, A.; Hartman, J.; Kunnari, V.; Harlin, A. Crosslinkable poly(lactic acid)-based materials: Biomass- derived solution for barrier coatings. J. Appl. Polym. Sci. 2017 , 134 , 44326. [CrossRef] 33. Li, C.; Jiang, T.; Wang, J.; Peng, S.; Wu, H.; Shen, J.; Guo, S.; Zhang, X.; Harkin-Jones, E. Enhancing the oxygen-barrier properties of polylactide by tailoring the arrangement of crystalline lamellae. ACS Sustain. Chem. Eng. 2018 , 6 , 6247–6255. [CrossRef] 34. Koppolu, R.; Lahti, J.; Abitbol, T.; Swerin, A.; Kuusipalo, J.; Toivakka, M. Continuous processing of nanocellulose and polylactic acid into multilayer barrier coatings. ACS Appl. Mater. Interfaces 2019 , 11 , 11920–11927. [CrossRef] [PubMed] 35. Koppolu, R.; Toivakka, M. High-throughput processing of nanocelluloses into biodegradable barrier coatings. In Proceedings of the 17th Fundamental Research Symposium, Cambridge, UK, 29 August–1 September 2022. 36. Koppolu, R. High-Throughput Processing of Nanocelluloses into Barrier Coatings: A Focus on Nanocellulose Rheology and Multilayer Barrier Properties. 2024. Available online: https://www.doria.fi/bitstream/handle/10024/188696/koppolu_rajesh. pdf?sequence=1&isAllowed=y (accessed on 7 February 2025). 37. Rocca-Smith, J.R.; Pasquarelli, R.; Lagorce-Tachon, A.; Rousseau, J.; Fontaine, S.; Aguié-Béghin, V.; Debeaufort, F.; Karbowiak, T. Toward sustainable PLA-based multilayer complexes with improved barrier properties. ACS Sustain. Chem. Eng. 2019 , 7 , 3759–3771. [CrossRef] 38. Scarfato, P.; Di Maio, L.; Milana, M.R.; Giamberardini, S.; Denaro, M.; Incarnato, L. Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly (lactic acid)/nanoclay multilayer films for food packaging. Food Addit. Contam. Part A 2017 , 34 , 1730–1742. [CrossRef] 39. Haas, K.-H.; Wolter, H. Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER® s). Curr. Opin. Solid State Mater. Sci. 1999 , 4 , 571–580. [CrossRef] 40. Amberg-Schwab, S.; Hoffmann, M.; Bader, H.; Gessler, M. Inorganic-organic polymers with barrier properties for water vapor, oxygen and flavors. J. Sol-Gel Sci. Technol. 1998 , 13 , 141–146. [CrossRef] 41. Charton, C.; Schiller, N.; Fahland, M.; Holländer, A.; Wedel, A.; Noller, K. Development of high barrier films on flexible polymer substrates. Thin Solid Film. 2006 , 502 , 99–103. [CrossRef] 42. Iotti, M.; Fabbri, P.; Messori, M.; Pilati, F.; Fava, P. Organic–inorganic hybrid coatings for the modification of barrier properties of poly (lactic acid) films for food packaging applications. J. Polym. Environ. 2009 , 17 , 10–19. [CrossRef] 43. Solberg, A.; Zehner, J.; Somorowsky, F.; Rose, K.; Korpela, A.; Syverud, K. Material properties and water resistance of inorganic– organic polymer coated cellulose paper and nanopaper. Cellulose 2023 , 30 , 1205–1223. [CrossRef] 44. Emmert, K.; Amberg-Schwab, S.; Braca, F.; Bazzichi, A.; Cecchi, A.; Somorowsky, F. bioORMOCER®—Compostable Functional Barrier Coatings for Food Packaging. Polymers 2021 , 13 , 1257. [CrossRef] [PubMed] 45. Luo, Y.; Lin, Z.; Guo, G. Biodegradation assessment of poly (lactic acid) filled with functionalized titania nanoparticles (PLA/TiO 2 ) under compost conditions. Nanoscale Res. Lett. 2019 , 14 , 56. [CrossRef] 46. Miettinen, P.; Auvinen, S.; Kuusipalo, J.; Haakana, S. Validity of traditional barrier-testing methods to predict the achievable benefits of the new generation water based barrier coatings for packaging materials. In Proceedings of the PTS Coating Symposium, Munich, Germany, 16–17 September 2015; pp. 328–342. 47. Kugge, C.; Johnson, B. Improved barrier properties of double dispersion coated liner. Prog. Org. Coat. 2008 , 62 , 430–435. [CrossRef] 48. Lamminmäki, T.; Kettle, J.; Puukko, P.; Ridgway, C.; Gane, P. Short timescale inkjet ink component diffusion: An active part of the absorption mechanism into inkjet coatings. J. Colloid Interface Sci. 2012 , 365 , 222–235. [CrossRef] 49. Schuster, J.; Cichos, F.; Von Borzcyskowski, C. Diffusion in ultrathin liquid films. Eur. Polym. J. 2004 , 40 , 993–999. [CrossRef] 50. Chen, C.; Wang, L.; Es-haghi, S.S.; Tajvidi, M.; Wang, J.; Gardner, D.J. Biodegradable and recyclable bio-based laminated films of poly (lactic acid) and cellulose nanocrystals for food barrier packaging. Food Packag. Shelf Life 2024 , 42 , 101244. [CrossRef] 51. Chinga-Carrasco, G.; Syverud, K. On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Res. Lett. 2012 , 7 , 192. [CrossRef] [PubMed]

Made with FlippingBook interactive PDF creator