Advanced Materials & Sustainable Manufacturing 2024 , 1, 10003
13 of 14
6. Li Y, Yang C, Zhang H, Li J. Discussion on key technologies of digital twin in process industry. Acta Automat. Sin. 2021 , 47 , 501 – 514. doi:10.16383/j.aas.c200147 (In Chinese). 7. Zhao L, Fang Y, Lou P, Yan J, Xiao A. Cutting parameter optimization for reducing carbon emissions using digital twin. Int. J. Precis. Eng. Manuf. 2021 , 22 , 933 – 949. 8. Huynh TA, Zondervan E. Process intensification and digital twin-the potential for the energy transition in process industries. Phys. Sci. Rev. 2022 , 8 , 4859 – 4877. 9. He Z, Xu J, Tran KP, Thomassey S, Zeng X, Yi C. Modeling of textile manufacturing processes using intelligent techniques: a review. Int. J. Adv. Manuf. Technol. 2021 , 116 , 39 – 67. 10. Li M, He Z, Xu J. A comparative study of ozonation on aqueous reactive dyes and reactive-dyed cotton. Color. Technol. 2021 , 137 , 376 – 388. 11. He Z, Li M, Zuo D, Xu J, Yi C. Effects of color fading ozonation on the color yield of reactive-dyed cotton. Dye Pigments 2019 , 164 , 417 – 427. 12. Hu Y, Li J, Hong M, Ren J, Lin R, Liu Y, et al. Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm — A case study of papermaking process. Energy 2019 , 170 , 1215 – 1227. 13. Man Y, Yan Y, Wang X, Ren J, Xiong Q, He Z. Overestimated carbon emission of the pulp and paper industry in China. Energy 2023 , 273 , 127279. 14. Lai C, Wang Y, Fan K, Cai Q, Ye Q, Pang H, et al. An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization. Energy 2022 , 245 , 123225. 15. He Z, Liu C, Wang Y, Wang X, Man Y. Optimal operation of wind-solar-thermal collaborative power system considering carbon trading and energy storage. Appl. Energy 2023 , 352 , 121993. 16. He Z, Qian J, Li J, Hong M, Man Y. Data-driven soft sensors of papermaking process and its application to cleaner production with multi-objective optimization. J. Clean. Prod. 2022 , 372 , 133803. 17. Zhang H, Li J, Hong M, Man Y, He Z. Cost Optimal Production-Scheduling Model Based on VNS-NSGA-II Hybrid Algorithm — Study on Tissue Paper Mill. Processes 2022 , 10 , 12072. 18. Zhang Z, He X, Man Y, He Z. Multi-objective scheduling in dynamic of household paper workshop considering energy consumption in production process. J. Smart Environ. Green Comput. 2023 , 3 , 87 – 105. 19. He Z, Chen G, Hong M, Xiong Q, Zeng X, Man Y. Process Monitoring and Fault Prediction of Papermaking by Learning from Imperfect Data. IEEE Trans. Autom. Sci. Eng. 2023 . doi:10.1109/TASE.2023.3290552. 20. He Z, Tran KP, Thomassey S, Zeng X, Xu J, Yi C. A deep reinforcement learning based multi-criteria decision support system for optimizing textile chemical process. Comput. Ind. 2021 , 125 , 103373. 21. Zhang Y, Hong M, Li J, Ren J, Man Y. Energy system optimization model for tissue papermaking process. Comput. Chem. Eng. 2021 , 146 , 107220. 22. He Z, Hong M, Zheng H, Wang J, Xiong Q, Man Y. Towards low-carbon papermaking wastewater treatment process based on Kriging surrogate predictive model. J. Clean. Prod. 2023 , 425 , 139039. 23. Soares RM, Câmara MM, Feital T, Pinto JC. Digital twin for monitoring of industrial multi-effect evaporation. Processes 2019 , 7 , 537. 24. Liu M, Fang S, Dong H, Xu C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021 , 58 , 346 – 361. 25. Schroeder GN, Steinmetz C, Rodrigues RN, Henriques RV, Rettberg A, Pereira CE. A methodology for digital twin modeling and deployment for industry 4.0. Proc. IEEE 2020 , 109 , 556 – 567. 26. Shabbir I, Mirzaeian M, Sher F. Energy efficiency improvement potentials through energy benchmarking in pulp and papermaking industry. Clean. Chem. Eng. 2022 , 3 , 100058. 27. He Z, Tran KP, Thomassey S, Zeng X, Xu J, Yi C. Multi-objective optimization of the textile manufacturing process using Deep-Q-Network based multi-agent reinforcement learning. J. Manuf. Syst. 2021 , 62 , 939 – 949. 28. Xu J, He Z, Li S, Ke W. Production cost optimization of enzyme washing for indigo dyed cotton denim by combining Kriging surrogate with differential evolution algorithm. Text. Res. J. 2020 , 90 , 1860 – 1871. 29. Xu J, Liu F, He Z, Zhang Z, Li S. Cost optimization of sodium hypochlorite bleaching washing for denim by combining ensemble of surrogates with particle swarm optimization. J. Eng. Fiber. Fabr. 2021 , 16 . doi:10.1177/15589250211022331. 30. Li J, Tian X, Liu J. Dynamic Data Scheduling of a Flexible Industrial Job Shop Based on Digital Twin Technology. Discrete Dyn. Nat. Soc. 2022 , 2022 , 1009507. 31. Bamunuarachchi D, Georgakopoulos D, Banerjee A, Jayaraman PP. Digital twins supporting efficient digital industrial transformation. Sensors 2021 , 21 , 6829. 32. Zhuang C, Miao T, Liu J, Xiong H. The connotation of digital twin, and the construction and application method of shop-floor digital twin. Robot. Comput. Integr. Manuf. 2021 , 68 , 102075. 33. Negri E, Berardi S, Fumagalli L, Macchi M. MES-integrated digital twin frameworks. J. Manuf. Syst. 2020 , 56 , 58 – 71.
Made with FlippingBook interactive PDF creator