Advanced Materials & Sustainable Manufacturing 2024 , 1, 10003 14 of 14 34. Tao F, Sui F, Liu A, Qi Q, Zhang M, Song B, et al. Digital twin-driven product design framework. Int. J. Prod. Res. 2019 , 57 , 3935 – 3953. 35. Zhang Y, Wang W, Zhang H, Li H, Liu C, Du X. Vibration monitoring and analysis of strip rolling mill based on the digital twin model. Int. J. Adv. Manuf. Technol. 2022 , 122 , 3667 – 3681. 36. Ding G, Guo S, Wu X. Dynamic Scheduling Optimization of Production Workshops Based on Digital Twin. Appl. Sci. 2022 , 12 , 10451. 37. Goodwin T, Xu J, Celik N, Chen CH. Real-time digital twin-based optimization with predictive simulation learning. J. Simul. 2022 , doi:10.1080/17477778.2022.2046520. 38. Yin Y, Liu J, Wang Y, Zhuo Y, Meng Y. Modeling of Ventilation’s Influence on Energy Consumption in Multi -cylinder Dryer Section Part1: Theoretical Model. Int. J. Comput. Intell. Syst. 2022 , 15 , 1 – 13. 39. Marques JP, Cunha DC, Harada LM, Silva LN, Silva ID. A cost-effective trilateration-based radio localization algorithm using machine learning and sequential least-square programming optimization. Comput. Commun. 2021 , 177 , 1 – 9. 40. Liu Y, Shen W, Man Y, Liu Z, Seferlis P. Optimal scheduling ratio of recycling waste paper with NSGAII based on deinked-pulp properties prediction. Comput. Ind. Eng. 2019 , 132 , 74 – 83. 41. Jadidi A, Menezes R, de Souza N, de Castro Lima AC. Short-term electric power demand forecasting using NSGA II-ANFIS model. Energies 2019 , 12 , 1891. 42. Verma S, Pant M, Snasel V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems. IEEE Access 2021 , 9 , 57757 – 57791. 43. Ao Y, Li H, Zhu L, Ali S, Yang Z. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Pet. Sci. Eng. 2019 , 174 , 776 – 789. 44. Ciulla G, D’Amico A. Building energy performance forecasting: A multiple linear regression approach. Appl. Energy 2019 , 253 , 113500. 45. Rathore SS. An exploratory analysis of regression methods for predicting faults in software systems. Soft Comput. 2021 , 25 , 14841 – 14872. 46. Otchere DA, Ganat TOA, Ojero JO, Tackie-Otoo BN, Taki MY. Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. J. Pet. Sci. Eng. 2022 , 208 , 109244. 47. Cai J, Xu K, Zhu Y, Hu F, Li L. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest. Appl. Energy 2020 , 262 , 114566. 48. Sun L, Ji Y, Zhu X, Peng T. Process knowledge-based random forest regression for model predictive control on a nonlinear production process with multiple working conditions. Adv. Eng. Inform. 2022 , 52 , 101561.
Made with FlippingBook interactive PDF creator