ǤǤ Ȁ Ȁ
1. Xia, J. Y. et al. Metalearning-based alternating minimization algorithm for nonconvex optimization. IEEE Trans. Neural Netw. Learn. Syst. 34 (9), 5366–5380 (2022). 2. Xu, B. & Guo, Y. A novel DVL calibration method based on robust invariant extended Kalman filter. IEEE Trans. Veh. Technol. 71 (9), 9422–9434 (2022). 3. Xu, B. et al. A novel adaptive filtering for cooperative localization under compass failure and non-gaussian noise. IEEE Trans. Veh. Technol. 71 (4), 3737–3749 (2022). 4. SUMIDA, M. & FUJIMOTO, T. Fiber-concentration distributions of pulp suspension flowing in a modeled headbox of papermaking machines. Trans. Visualization Soc. Jpn. 36 (12), 55–61 (2016). 5. Kuusisto, T. Improving surface sizing operations for an educational paper machine (2014). 6. Ghodbanan, S., Alizadeh, R. & Shafiei, S. Steady-state modeling of multi-cylinder dryers in a corrugating paper machine. Drying Technol. 33 (12), 1474–1490 (2015). 7. Ji, L. et al. Data-based optimal consensus control for multiagent systems with time delays: Using prioritized experience replay. IEEE Trans. Syst. Man. Cybern. Syst. (2024). 8. Song, F. et al. Motion control of wafer scanners in lithography systems: From setpoint generation to multi-stage coordination. IEEE Trans. Instrum. Meas. (2024). 9. Holmberg, K., Siilasto, R., Laitinen, T., Andersson, P. & Jäsberg, A. Global energy consumption due to friction in paper machines. Tribol. Int. 62 , 58–77 (2013). 10. Sharma, D., Kumar, R. & Verma, V. December. Fuzzy tuned proportional integral derivative control of paper machine headbox. In 2015 Annual IEEE India Conference (INDICON) 1–4 (IEEE, 2015). 11. Zhang, X. et al. Adaptive pseudoinverse control for constrained hysteretic nonlinear systems and its application on dielectric elastomer actuator. IEEE/ASME Trans. Mechatron. 28 (4), 2142–2154 (2023). 12. Zhou, Z., Guo, S., Lin, S. & Zhang, W. Internal model control on hybrid headbox system. In 2017 36th Chinese Control Conference (CCC) 4397–4401 (IEEE, 2017). 13. Zhang, L., Ma, C. & Liu, J. Enhancing four-axis machining center accuracy through interactive fusion of spatiotemporal graph convolutional networks and an error-controlled digital twin system. J. Manuf. Process. 112 , 14–31 (2024). 14. Wang, J. et al. Adaptive PI event-triggered control for MIMO nonlinear systems with input delay. Inf. Sci. 120817 (2024). 15. Zhang, X. et al. EALLR: Energy-aware low-latency routing data driven model in mobile edge computing. IEEE Trans. Consum. Electron. (2024). 16. Keshari, A., Sonsale, A. N., Sharma, B. K. & Pohekar, S. D. Discrete event simulation approach for energy efficient resource management in paper & pulp industry. Procedia CIRP 78 , 2–7 (2018). 17. Schabel, S. & Biesalski, M. The role of paper chemistry and paper manufacture in the design of paper-based diagnostics.in paper-based diagnostics 23–46 (Springer, 2019). 18. Saini, P. & Kumar, R. Design of IMC based PI controller for paper machine headbox. J. Graphic Era Univ. 7 (1), 71–82 (2019). 19. Lin, L. et al. Imbalanced Industrial load identification based on optimized CatBoost with entropy features. J. Electr. Eng. Technol. 1–16 (2024). 20. Cao, Y., Yan, P., Lin, S., Zhou, Z. & Zhang, W. KF-based MPC For the cascaded headbox system in papermaking process. In 2017 36th Chinese Control Conference (CCC) 4369–4374 (IEEE, 2017). 21. Zhang-shu, Y. U. Configuration of closed headbox with suction ultraformer drum to improve tissue paper machines. China Pulp. Paper Ind. 2015 (22), 21 (2015). 22. Lindström, T. & Swerin, A. On the mechanical and chemical factors governing retention and formation of a fine paper stock: The case of headboxelongational shear. 100 years of knowledge connections. p. 30 (2015). 23. Gu, X. & Ren, H. A survey of transoral robotic mechanisms: Distal dexterity, variable stiffness, and triangulation. Cyborg Bionic Syst. 4 , 0007 (2023). 24. Mezei, J., Brunelli, M. & Carlsson, C. A fuzzy approach to using expert knowledge for tuning paper machines. J. Oper. Res. Soc. 68 (6), 605–616 (2017). 25. Quan, X. et al. An efficient closed-loop adaptive controller for a small-sized quadruped robotic rat. Cyborg Bionic Syst. (2024). 26. Xu, X. & Li, B. PDE-based observation and predictor-based control for linear systems with distributed infinite input and output delays. Automatica 170 , 111845 (2024). 27. Guan, T. et al. Fixed-time spacecraft attitude control with unwinding-free performance. IEEE Trans. Autom. Control (2024). 28. Saini, P., Juneja, P. K., Kumar, R. & Dixit, A. Worst case sensitivity analysis of controllers for stock consistency of paper machine subsystem. In 2020 International Conference on Advances in Computing, Communication & Materials (ICACCM) 351–356 (IEEE, 2020). 29. Wang, Z. et al. Robot base position and spacecraft cabin angle optimization via homogeneous stiffness domain index with nonlinear stiffness characteristics. Robot. Comput. Integr. Manuf. 102793 (2024). 30. Saini, P., Kumar, R. & Juneja, P. K. Design of PI controller for consistency of stock in paper machine headbox using particle swarm optimisation (PSO). In 2019 International Conference on Innovative Sustainable Computational Technologies (CISCT) 1–6 (IEEE, 2019). 31. Nisi, K., Nagaraj, B. & Agalya, A. Tuning of a PID controller using evolutionary multi objective optimization methodologies and application to the pulp and paper industry. Int. J. Mach. Learn. Cybernet. 10 (8), 2015–2025 (2019). 32. Sunori, S. K., Bhakuni, A. S., Maurya, S., Jethi, G. S. & Juneja, P. K. Improving the performance of control system for headbox consistency of paper mill using simulated annealing. In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) 1111–1116 (IEEE, 2020). 33. Hannachi, M., Ahmed, I. B. & Soudani, D. Internal model control of a paper machine headbox time-delay system with uncertain parameters in discrete-time. In 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET) 427–431 (IEEE, 2018). 34. Tan, J. et al. Event-triggered sliding mode control for spacecraft reorientation with multiple attitude constraints. IEEE Trans. Aerosp. Electron. Syst. 59 (5), 6031–6043 (2023). 35. Juneja, P. K., Chaturvedi, M., Ray, A. K., Yadav, G. & Belwal, N. Mass balance equations for retention and basis weight in a paper machine. In 2019 International Conference on Innovative Sustainable Computational Technologies (CISCT) 1–4 (IEEE, 2019). 36. Kumar, R. & Jain, A. Improved-GWO designed FO-based type-II fuzzy controller for frequency awareness of an AC microgrid under plug-in electric vehicle. J. Electr. Syst. Control 15 (3), 255–268 (2020). 37. Sharma, P. & Verma, S. Optimal design of a robust FO-multistage controller for the frequency awareness of an islanded AC microgrid under i-SCA algorithm. Renew. Energy Syst. Control . 12 (4), 512–525 (2021). 38. Rao, K. & Singh, D. Frequency and tie-line power awareness in eco-AGC of multi-area power system with SSO-based fractional- order controller. Int. J. Power Syst. Optim. 23 (7), 678–690 (2019). 39. Mehta, R. & Gupta, N. A fuzzy adaptive fractional-order PID controller for frequency control of an islanded microgrid under stochastic wind/solar uncertainties. Energy Control Syst. 18 (2), 301–315 (2020). 40. Ju, X. et al. Quantized predefined-time control for heavy-lift launch vehicles under actuator faults and rate gyro malfunctions. ISA Trans. 138 , 133–150 (2023).
ͷͼ
ȁǣȀȀǤȀͷͶǤͷͶ;ȀͺͷͻͿ;ǦͶͻǦ;ͻ;ͷͶǦͿ
Ƥ |
(2025) 15:1631
Made with FlippingBook interactive PDF creator