Skoglund et al.
10.3389/fther.2023.1282028
Pola, L., Collado, S., Oulego, P., and Díaz, M. (2022). Kraft black liquor as a renewable source of value-added chemicals. Chem. Eng. J. 448, 137728. doi:10.1016/J.CEJ.2022. 137728 Ribeiro Domingos, M. E. G., Flórez-Orrego, D., Santos, M. T. d., and Junior, S. de O. (2021). “ Comparative assessment of black liquor upgraded gasi fi cation in integrated kraft pulp, methanol and dimethyl ether production plants, ” in Computer aided chemical engineering . Editors M. Türkay and R. Gani (Elsevier), 50, 25 – 30. doi:10. 1016/B978-0-323-88506-5.50005-X Rootzén, J., Kjärstad, J., Johnsson, F., and Karlsson, H. (2018). “ Deployment of BECCS in basic industry — a Swedish case study, ” in International Conference on Negative CO2 Emissions, Göteborg, Sweden, May 22-24, 2018. https://research. chalmers.se/en/publication/506150. Rosa, L., Sanchez, D. L., and Mazzotti, M. (2021). Assessment of carbon dioxide removal potential via BECCS in a carbon-neutral Europe. Energy & Environ. Sci. 14 (5), 3086 – 3097. doi:10.1039/D1EE00642H Saari, J., Peltola, P., Kuparinen, K., Kaikko, J., Sermyagina, E., and Vakkilainen, E. (2023). Novel BECCS implementation integrating chemical looping combustion with oxygen uncoupling and a kraft pulp mill cogeneration plant. Mitig. Adapt. Strategies Glob. Change 28 (4), 21. doi:10.1007/s11027-023-10057-6 Santos, M. P. S., and Hanak, D. P. (2022). Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles. Front. Chem. Sci. Eng. 16 (9), 1291 – 1317. doi:10.1007/s11705-022- 2151-5 Santos, M. P. S., Manovic, V., and Hanak, D. P. (2021). Unlocking the potential of pulp and paper industry to achieve carbon-negative emissions via calcium looping retro fi t. J. Clean. Prod. 280, 124431. doi:10.1016/j.jclepro.2020.124431 Skagestad, R., Garðarsdóttir, S. Ó., Normann, F., Anheden, M., and Wolf, J. (2018). “ A case study of partial capture of CO2 from a pulp mill – the CO2 capture cost, ” in 14th Greenhouse Gas Control Technologies Conference (GHGT-14), Melbourne, Australia, 21-26 October 2018. doi:10.2139/ssrn.3366243 Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., et al. (2016). Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6 (1), 42 – 50. doi:10.1038/nclimate2870 Svensson, E., Morandin, M., and Harvey, S. (2019). Characterization and visualization of industrial excess heat for different levels of on-site process heat recovery. Int. J. Energy Res. 43 (14), 7988 – 8003. doi:10.1002/er.4787 Svensson, E., Wiertzema, H., and Harvey, S. (2021). Potential for negative emissions by carbon capture and storage from a novel electric plasma calcination process for pulp and paper mills. Front. Clim. 3. doi:10.3389/fclim.2021.705032 Téguia, C. D., Albers, R., and Stuart, P. R. (2017). Analysis of economically viable lignin-based biore fi nery strategies implemented within a kraft pulp mill. Tappi J. 16 (3), 157 – 169. doi:10.32964/tj16.3.157 Vakkilainen, E., and Välimäki, E. (2009). “ Effect of lignin separation to black liquor and recovery boiler operation, ” in TAPPI ’ s 2009 Engineering, Pulping, and Environmental Conference, Memphis TN, USA. doi:10.13140/2.1.2039.6485 Välimäki, E., Niemi, P., and Haaga, K. (2010). “ A case study on the effects of lignin recovery on recovery boiler operation, ” in International Chemical Recovery Conference, Williamsburg, VA, USA. doi:10.13140/2.1.1777.5046 Voldsund, M., Gardarsdottir, S. O., De Lena, E., Pérez-Calvo, J.-F., Jamali, A., Berstad, D., et al. (2019). Comparison of technologies for CO2 capture from cement production — Part 1: technical evaluation. Energies 12 (3), 559. doi:10.3390/en12030559 Zhang, W., Chen, J., Luo, X., and Wang, M. (2017). Modelling and process analysis of post-combustion carbon capture with the blend of 2-amino-2-methyl-1-propanol and piperazine. Int. J. Greenh. Gas Control 63, 37 – 46. doi:10.1016/j.ijggc.2017.04.018
Kuparinen, K., Lipiäinen, S., Vakkilainen, E., and Laukkanen, T. (2023). Effect of biomass-based carbon capture on the sustainability and economics of pulp and paper production in the Nordic mills. Environ. Dev. Sustain. 25 (1), 648 – 668. doi:10.1007/ s10668-021-02074-9 Kuparinen, K., Vakkilainen, E., and Tynjälä, T. (2019). Biomass-based carbon capture and utilization in kraft pulpmills. Mitig. Adapt. Strategies Glob. Change 24 (7), 1213 – 1230. doi:10.1007/s11027-018-9833-9 Lefvert, A., and Grönkvist, S. (2023). Smarter ways to capture carbon dioxide – exploring alternatives for small to medium-scale carbon capture in Kraft pulp mills. Int. J. Greenh. Gas Control 127, 103934. doi:10.1016/j.ijggc.2023.103934 Li, H., Frailie, P. T., Rochelle, G. T., and Chen, J. (2014). Thermodynamic modeling of piperazine/2-aminomethylpropanol/CO2/water. Chem. Eng. Sci. 117, 331 – 341. doi:10. 1016/j.ces.2014.06.026 Lipiäinen, S., Apajalahti, E.-L., and Vakkilainen, E. (2023). Decarbonization prospects for the European pulp and paper industry: different development pathways and needed actions. Energies 16 (2), 746. doi:10.3390/en16020746 Marlin, D. S., Sarron, E., and Sigurbjörnsson, Ó. (2018). Process advantages of direct CO2 to methanol synthesis. Front. Chem. 6, 446. doi:10.3389/fchem.2018.00446 Mendoza-Martinez, C., Kuparinen, K., Martins, M., Cardoso, M., Vakkilainen, E., and Saari, J. (2022). Negative carbon-dioxide emissions from Eucalyptus pulp mill including biosludge HTC treatment. O Papel. 83 (6), 83 – 89. Möllersten, K., Gao, L., and Yan, J. (2006). CO2 capture in pulp and paper mills: CO2 balances and preliminary cost assessment. Mitig. Adapt. Strategies Glob. Change 11 (5 – 6), 1129 – 1150. doi:10.1007/s11027-006-9026-9 Möllersten, K., Yan, J., and Westermark, M. (2003). Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills. Energy 28 (7), 691 – 710. doi:10.1016/S0360-5442(03)00002-1 Mongkhonsiri, G., Charoensuppanimit, P., Anantpinijwatna, A., Gani, R., and Assabumrungrat, S. (2020). Process development of sustainable biore fi nery system integrated into the existing pulping process. J. Clean. Prod. 255, 120278. doi:10.1016/j. jclepro.2020.120278 Morandin, M. (2017). MAT4PI: a Matlab based framework for process integration studies — user guide. Chalmers Univ. Technol. Div. Energy Technol. 2017. [Computer software]. Naturvårdsverket (2005). Förbränningsanläggningar för energiproduktion inklusive rökgaskondensering [Combustion plants for energy production including fl ue gas condensation] (Industry Fact Sheet). Naturvårdsverket. Available at: https://www.naturvardsverket.se/globalassets/media/publikationer- pdf/8100/91-620-8196-9.pdf. Nwaoha, C., and Tontiwachwuthikul, P. (2019). Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: techno- economic assessment of advanced process con fi guration. Appl. Energy 250, 1202 – 1216. doi:10.1016/j.apenergy.2019.05.097 Onarheim, K., Santos, S., Kangas, P., and Hankalin, V. (2017a). Performance and cost of CCS in the pulp and paper industry part 2: economic feasibility of amine-based post- combustion CO2 capture. Int. J. Greenh. Gas Control 66, 60 – 75. doi:10.1016/J.IJGGC. 2017.09.010 Onarheim, K., Santos, S., Kangas, P., and Hankalin, V. (2017b). Performance and costs of CCS in the pulp and paper industry part 1: performance of amine-based post- combustion CO2 capture. Int. J. Greenh. Gas Control 59, 58 – 73. doi:10.1016/j.ijggc. 2017.02.008 Ong, B. H. Y., Walmsley, T. G., Atkins, M. J., and Walmsley, M. R. W. (2020). A kraft mill-integrated hydrothermal liquefaction process for liquid fuel Co-production. Processes 8 (10), 1216. doi:10.3390/pr8101216
Frontiers in Thermal Engineering
14
frontiersin.org
Made with FlippingBook interactive PDF creator