PAPER making! g! FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL ® Volume 10, Number 1, 2024
were developed and tested. Handsheets were characterized using several mechanical property tests including tensile strength, tearing resistance, burst strength, short-span compression, ring crush, together with Gurley air resistance, contact angle, and Cobb60 tests. Generally, addition of hemp hurd fibers significantly improved handsheet mechanical properties. Hot-pressing of the handsheets so as to approximate molded fiber thermoforming further enhanced their performance, with pure hemp hurd handsheets having the highest mechanical properties and barrier performance. A prototype was successfully thermoformed from hemp fiber, demonstrating overall feasibility of this fibre source for molded fibre objects. NANO-SCIENCE “Fundamental investigation of micro -nano cellulose and lignin interaction for transparent paper: Experiment and electrostatic potential calculation ” , Hongfu Bi, Yuan Wei, Zi Wang & Gang Chen, International Journal of Biological Macromolecules , Vol.260, Part 1, Mar. 2024, 129180. Plastic has significant negative consequences for the environment and human health, demanding greener alternatives. Lignocellulose is a sustainable biomass material, and its paper has been considered as a potential material to replace plastics. Micro-nano lignocellulose, derived from natural plants, possesses a small size and abundant hydrogen bonding capacity. However, there is no clear explanation for the interactions between lignin and micro-nano cellulose, and little understanding of how the interaction can affect the papers' structure and optical properties. Electrostatic potential calculation is a reliable tool to explain non-covalent interactions, and can explore the binding between lignin and micro-nano cellulose. In this paper, kenaf – a non-wood fiber raw material – was employed to prepare micro-nano lignocellulose. The resulting slurry facilitated the production of transparent paper via a simple casting method. The prepared transparent micro-nano paper exhibited high transparency (~90 %), UVA resistance (~80 %), and hydrophobicity (~114°). More importantly, the electrostatic potential calculation demonstrates the inherent relationship between structure and performance, providing practical knowledge for constructing film materials. “ Mechanically strong micro-nano fibrillated cellulose paper with improved barrier and water-resistant properties for replacing plastic ” , Huiping Lin, Olonisakin Kehinde, Chengwei Lin, Mingen Fei, Ran Li, Xinxiang Zhang, Wenbin Yang & Jian Li, International Journal of Biological Macromolecules , Available online 10 Feb. 2024, 130102. Replacing nonbiodegradable plastics with environmentally friendly cellulose materials has emerged as a key trend in environmental protection. This study highlights the development of a strong and hydrophobic micro-nano fibrillated cellulose paper (MNP) through the incorporation of micro-nano fibrillated cellulose fiber (MNF) and chitin nanocrystal (Ch), followed by the impregnation of polymethylsiloxane (PMHS). A low-acid, heat-assisted colloidal grinding strategy was employed to prepare MNF with a high aspect ratio effectively. Ch was incorporated as a reinforcing matrix into the cellulose fiber scaffold through straightforward mechanical mixing and mechanical hot-pressing treatments. Compared to pure MNP, the 5Ch- MNP exhibited a 25 % improvement in tensile strength, reaching 170 MPa, and showed enhanced barrier properties against oxygen and water vapor. The impregnation of PMHS rapidly confers environmentally resistant hydrophobic properties to 1 % PMHS -5Ch-MNP, leading to a water contact angle exceeding 112°, and a 290 % increase in tensile strength under wet conditions. Additionally, the paper demonstrated excellent antibacterial adhesion properties, with the adhesion rates for E. coli and S. aureus exceeding 98 %. This study successfully produced functional cellulose paper with remarkable mechanical properties and barrier properties, as
Technical Abstracts
Page 4 of 11
Made with FlippingBook Annual report maker