Molecules 2023 , 28 , 7984
20of 23
98. Gardi, I.; Mishael, Y.G.; Lindahl, M.; Muro-Pastor, A.M.; Undabeytia, T. Coagulation-flocculation of Microcystis aeruginosa by polymer-clay based composites. J. Clean. Prod. 2023 , 394 , 136356. [CrossRef] 99. Xiao, H.; Liu, Z.; Wiseman, N. Synergetic effect of cationic polymer microparticles and anionic polymer on fine clay flocculation. J. Colloid Inter. Sci. 1999 , 216 , 409–417. [CrossRef] 100. Ono, H.; Deng, Y. Flocculation and retention of precipitated calcium carbonate by cationic polymeric microparticle flocculants. J. Colloid Inter. Sci. 1997 , 188 , 183–192. [CrossRef] 101. Hämäläinen, J.; Lindström, S.B.; Hämäläinen, T.; Niskanen, H. Papermaking fibre-suspension flow simulations at multiple scales. J. Eng. Math. 2011 , 71 , 55–79. [CrossRef] 102. Nissan, A.H.; Sternstein, S.S. Cellulose-fiber bonding. Tappi J. 1964 , 47 , 1–5. 103. Samanta, M.; Chaudhury, S. Coarse-grained molecular dynamics simulations study of the conformational properties of single polyelectrolyte diblock copolymer. Biphys. Chem. 2020 , 266 , 106437. [CrossRef] [PubMed] 104. Li, R.; Wu, M.; Guo, Y.; Zhang, H. Comprehensive physical visualisation of the chain conformation and solution property of carboxymethylated konjac glucomannan: Comparison of charged and uncharged polyelectrolytes. Food Hydrocoll. 2021 , 118 , 106725. [CrossRef] 105. Quezada, G.R.; Jeldres, R.I.; Fawell, P.D.; Toledo, P.G. Use of molecular dynamics to study the conformation of an anionic polyelectrolyte in saline medium and its adsorption on a quartz surface. Miner. Eng. 2018 , 129 , 102–105. [CrossRef] 106. Lee, H. Effect of polyelectrolyte size on multilayer conformation and dynamics at different temperatures and salt concentrations. J. Mol. Graph. Model. 2016 , 70 , 246–252. [CrossRef] [PubMed] 107. Böhmer, M.R.; Evers, O.A.; Scheutjens, J.M.H.M. Weak Polyelectrolytes two surfaces: Adsorption and stabilization. Macromolecules 1990 , 23 , 2288–2301. [CrossRef] 108. Falk, M.; Ödberg, L.; Wågberg, L.; Risinger, G. Adsorption kinetics for cationic polyelectrolytes onto pulp fibers in turbulent flow. Colloids Surf. 1989 , 40 , 115–124. [CrossRef] 109. Nasser, M.S.; Twaiq, F.A.; Onaizi, S.A. Effect of polyelectrolytes on the degree of flocculation of papermaking suspensions. Sep. Purif. Technol. 2013 , 103 , 43–52. [CrossRef] 110. Lai, M.; Lin, H.; Luo, Y.; Li, H.; Wang, X.; Sun, R. Interaction between chitosan-based clay nanocomposites and cellulose in a chemical pulp suspension. Carbohydr. Polym. 2016 , 137 , 375–381. [CrossRef] 111. Cui, J.; Niu, X.; Zhang, D.; Ma, J.; Zhu, X.; Zheng, X.; Lin, Z.; Fu, M. The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter. Carbohydr. Polym. 2023 , 304 , 120474. [CrossRef] 112. Wang, D.; Wang, D.; Deng, C.; Wang, K.; Tan, X. Flocculation of quartz by a dual polymer system containing tannic acid and poly (ethylene oxide): Effect of polymer chemistry and hydrodynamic conditions. Chem. Eng. J. 2022 , 446 , 137403. [CrossRef] 113. An, Z.; Hou, X.; Zhou, P.; Zhang, R.; Fang, D. A novel flexible, layered, recoverable SiO 2 fiber skeleton and aerogel composites material prepared by papermaking process. Ceram. Int. 2021 , 47 , 12963–12969. [CrossRef] 114. Bhayo, A.M.; Yang, Y.; He, X. Polymer brushes: Synthesis, characterization, properties and applications. Prog. Mater. Sci. 2022 , 130 , 101000. [CrossRef] 115. Yang, R.; Wang, X.; Yan, S.; Dong, A.; Luan, S.; Yin, J. Advances in design and biomedical application of hierarchical polymer. Prog. Polym. Sci. 2021 , 118 , 101409. [CrossRef] 116. Zhao, K.; Gao, Z.; Song, D.; Zhang, P.; Cui, J. Assembly of catechol-modified polymer brushes for drug delivery. Polym. Chem. 2022 , 13 , 373–378. [CrossRef] 117. Chang, L.; Yan, H.; Chang, J.; Gautrot, J.E. Cationic polymer brush-coated bioglass nanoparticles for the design of bioresorbable RNA delivery vectors. Euro. Polym. J. 2021 , 156 , 110593. [CrossRef] 118. Cheng, Y.; Xia, Q.; Liu, H.; Solomon, M.B.; Ling, C.D.; Müllner, M. Polymer brush-grafted cellulose nanocrystals for the synthesis of porous carbon-coated titania nanocomposites. Polym. Chem. 2023 , 14 , 2181–2189. [CrossRef] 119. Jia, H.; Cao, J.; Lu, Y. Design and fabrication of functional hybrid materials for catalytic applications. Curr. Opin. Green Sust. 2017 , 4 , 16–22. [CrossRef] 120. Yang, Q.; Li, L.; Zhao, F.; Wang, Y.; Ye, Z.; Guo, X. Generation of MnO 2 nanozyme in spherical polyelectrolyte brush for colorimetric detection of glutathione. Mater. Lett. 2019 , 248 , 89–92. [CrossRef] 121. Wang, X.; Chen, X.; Cowling, S.; Wang, L.; Liu, X. Polymer brushes tethered ZnO crystal on cotton fiber and the application on durable and washable UV protective clothing. Adv. Mater. Interfaces 2019 , 6 , 1900564. [CrossRef] 122. Hu, Q.; Wang, W.; Ma, T.; Zhang, C.; Kuang, J.; Wang, R. Anti-UV and hydrophobic dual-functional coating fabrication for flame retardant polyester fabrics by surface-initiated PET RAFT technique. Eur. Polym. J. 2022 , 173 , 111275. [CrossRef] 123. Cozens, E.J.; Kong, D.; Roohpour, N.; Gautrot, J.E. The physic-chemistry of adhesions of protein resistant and weak polyelectrolyte brushes to cells and tissues. Soft Matter 2020 , 16 , 505–522. [CrossRef] [PubMed] 124. Su, N.; Li, H.; Zheng, H.; Yi, S.; Liu, X. Synthesis and characterization of poly(sodium-p-styrenesulfonate)/modified SiO 2 spherical brushes. Express. Polym. Lett. 2012 , 8 , 680–686. [CrossRef] 125. Hirai, T.; Kobayashi, M.; Takahara, A. Control of the primary and secondary structure of polymer brushes by surface-initiated living/controlled polymerization. Polym. Chem. 2017 , 8 , 5456–5468. [CrossRef] 126. Khan, M.; Wu, Z.; Mao, S.; Shah, S.N.; Lin, J.M. Controlled grafted poly (quaternized-4-vinylpyridine- co -acrylic acid) brushes attract bacteria for effective antimicrobial surfaces. J. Mater. Chem. B 2018 , 6 , 3782–3791. [CrossRef] [PubMed]
Made with FlippingBook Annual report maker