Molecules 2023 , 28 , 7984
21of 23
127. Su, N. Polyaniline-doped spherical polyelectrolyte brush nanocomposites with enhanced electrical conductivity, thermal stability, and solubility property. Polymers 2015 , 7 , 1599–1616. [CrossRef] 128. Irigoyen, J.; Arekalyan, V.B.; Navoyan, Z.; Iturri, J.; Moya, S.E.; Donath, E. Spherical polyelectrolyte brushes’ constant zeta potential with varying ionic strength: An electrophoretic study using a hairy layer approach. Soft Matter 2013 , 9 , 11609–11617. [CrossRef] 129. Cao, Q.; Bachmann, M. Polyelectrolyte adsorption on an oppositely charged spherical polyelectrolyte brush. Soft Matter 2013 , 9 , 5087–5098. [CrossRef] 130. Hao, Q.; Xia, G.; Tan, H.; Chen, E.; Yang, S. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions. Phys. Chem. Chem. Phys. 2018 , 20 , 26542–26551. [CrossRef] 131. Zhang, R.; Yu, Z.; Hou, X.; Shen, Z.; Deng, J.; Zhou, Z.; Guo, X.; Wang, J.; Zhu, X. Highly selective separation of dyes using compressed CO 2 and spherical polyelectrolyte brushes. RSCAdv. 2016 , 6 , 42693–42700. [CrossRef] 132. Masoomi, H.; Wang, Y.; Fang, X.; Wang, P.; Chen, C.; Liu, K.; Gu, H.; Xu, H. Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles. Nanoscale 2019 , 11 , 14050–14059. [CrossRef] [PubMed] 133. Bakhshandeh, A.; Segala, M.; Colla, T.E. Equilibrium conformations and surface charge regulation of spherical polymer brushes in stretched regimes. Macromolecules 2022 , 55 , 35–48. [CrossRef] 134. Parsonage, E.; Tirrell, M.; Watanabe, H. Adsorption of poly (2-vinylpyridine)-poly (styrene) block copolymers from toluene solutions. Macromolecules 1991 , 24 , 1987–1995. [CrossRef] 135. Motschmann, H.; Stamm, M.; Toprakcioglu, C. Adsorption kinetics of block copolymers from a good solvent: A two-stage process. Macromolecules 1991 , 24 , 3681–3688. [CrossRef] 136. Li, C.; Mao, J.; Li, S.; Wang, Y.; Liu, H. A long chain-induced depletion effect for abnormal grafting in the preparation of bimodal bidisperse polymer-grafted nanoparticles. Phys. Chem. Chem. Phys. 2023 , 25 , 5627–5637. [CrossRef] 137. Tan, H.; Xia, G.; Liu, L.; Miao, B. Morphologies of a polyelectrolyte brush grafted onto a cubic colloid in the presence of trivalent ions. Phys. Chem. Chem. Phys. 2019 , 21 , 20031–20044. [CrossRef] 138. Tran, Y.; Auory, P. Synthesis of poly (styrene sulfonate) brushes. J. Am. Chem. Soc. 2001 , 123 , 3644–3654. [CrossRef] 139. Su, N. Synthesis of poly (2-Acrylamido-2-methylpropanesulfnoinc Salt) modified carbon spheres. Polymers 2023 , 15 , 3510. [CrossRef] 140. Wolski, K.; Szuwarzyn´ ski, M.; Zapotoczny, S. A facile route electronically conductive polyelectrolyte brushes as platforms of molecular wires. Chem. Sci. 2015 , 6 , 1754–1760. [CrossRef] 141. Neri-Cruz, C.E.; Teixeira, F.M.E.; Gautrot, J.E. A guide to functionalisation and bioconjugation strategies to surface-initiated polymer brushes. Chem. Commun. 2023 , 59 , 7534–7558. [CrossRef] [PubMed] 142. Banerijee, S.; Paira, T.K.; Mandal, T.K. Surface confined atom transfer radical polymerization: Access to custom library of polymer-based hybrid materials for speciality applications. Polym. Chem. 2014 , 5 , 4153–4167. [CrossRef] 143. Zhang, H.; Ruhe, J. Weak Polyelectrolyte brushes as substrates for the formation of surface-attached polyelectrolyte-polyelectrolyte complexes and polyelectrolyte multilayers. Macromolecules 2005 , 38 , 10743–10749. [CrossRef] 144. Wang, S.; Song, J.; Li, Y.; Zhao, X.; Chen, L.; Li, G.; Wang, L.; Jia, Z.; Ge, X. Grafting antibacterial polymer brushes from titanium surface via polydopamine chemistry and activators regenerated by electron transfer ATRP. React. Funct. Polym. 2019 , 140 , 48–55. [CrossRef] 145. Kalelkar, P.P.; Geng, Z.; Cox, B.; Finn, M.G.; Collard, D.M. Surface-initiated atom-transfer radical polymerization (SI-ATRP) of bactericidal polymer brushes on poly (lactic acid) surfaces. Colloids Surf. B 2022 , 211 , 112242. [CrossRef] [PubMed] 146. Yin, R.; Wang, Z.; Bockstaller, M.R.; Matyjaszewski, K. Tuning dispersity of linear polymers and polymeric brushes grown from nanoparticles by atom transfer radical polymerization. Polym. Chem. 2021 , 12 , 6071–6082. [CrossRef] 147. Zhou, J.; Sun, Y.; Huang, Z.; Luo, Z.; Yu, B.; Zou, X.; Hu, H. Growing antifouling fluorinated polymer brushes on polyvinyl alcohol hydrogel surface via g-C 3 N 4 @InVO 4 catalyzed surface-initiated photo atom transfer radical polymerization. Colloids Surf. A 2021 , 622 , 126598. [CrossRef] 148. Lee, Y.; Boyer, C.; Kwon, M.S. Photocontrolled RAFT polymerization: Past, present, and future. Chem. Soc. Rev. 2023 , 52 , 3035–3097. [CrossRef] 149. Hu, L.; Hao, Q.; Wang, L.; Cui, Z.; Fu, P.; Liu, M.; Qiao, X.; Pang, X. The in situ “grafting from” approach for the synthesis of polymer brushes on upconversion nanoparticles via NIR-mediated RAFT polymerization. Polym. Sci. 2021 , 12 , 545–553. [CrossRef] 150. Cho, M.K.; Seo, H.; Lee, J.; Cho, W.K.; Son, K. Polymer brush growth by oxygen-initiated RAFT polymerization on various substrates. Polym. Chem. 2021 , 12 , 7023–7030. [CrossRef] 151. Xing, Y.; Li, Q.; Chen, X.; Li, M.; Wang, S.; Li, Y.; Wang, T.; Sun, X.; Li, X. Preparation of isoelectric point-switchable polymer brush-grafted mesoporous silica using RAFT polymerization with high performance for Ni(II) adsorption. Powder Technol. 2022 , 412 , 117980. [CrossRef] 152. Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000 , 25 , 677–710. [CrossRef] 153. Baum, M.; Brittain, W.J. Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules 2002 , 35 , 610. [CrossRef] 154. Wittemann, A.; Drechsler, M.; Talmon, Y.; Ballauff, M. High elongation of polyelectrolyte chains in the osmotic limit of spherical polyelectrolyte brushes: A study by cryogenic transmition electron microscopy. J. Am. Chem. Soc. 2005 , 127 , 9688–9689. [CrossRef]
Made with FlippingBook Annual report maker