PAPERmaking! Vol10 Nr1 2024

Molecules 2023 , 28 , 7984

22of 23

155. Lu, Y.; Proch, S.; Scrinner, M.; Drechsler, M.; Kempe, R.; Ballauff, M. Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J. Mater. Chem. 2009 , 19 , 3955–3961. [CrossRef] 156. Sharma, G.; Mei, Y.; Ballauff, M.; Irrgang, T.; Proch, S.; Kempe, R. Spherical polyelectrolyte brushes as carriers for platinum nanoparticles in heterogeneous hydrogenation reactions. J. Catal. 2007 , 246 , 10–14. [CrossRef] 157. Newcomb, C.J.; Moyer, T.J.; Lee, S.S.; Stupp, S.I. Advances in cryogenic transmission electron microscopy for the characterization of dynamic self-assembling nanostructures. Curr. Opin. Colloid Interface Sci. 2012 , 17 , 350–359. [CrossRef] [PubMed] 158. Henzler, K.; Haupt, B.; Rosenfeldt, S.; Harnau, L.; Narayanan, T.; Ballauff, M. Interaction strength between proteins and polyelectrolyte brushes: A small angle X-ray scattering study. Phys. Chem. Chem. Phys. 2011 , 13 , 17599. [CrossRef] [PubMed] 159. Penfold, J.; Thomas, R.K. Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent progress. Curr. Opin. Colloid Interface Sci. 2014 , 19 , 198–206. [CrossRef] 160. Reese, C.J.; Boyes, S.G. New methods in polymer brush synthesis: Non-vinyl-based semiflexible and rigid-rod polymer brushes. Prog. Polym. Sci. 2021 , 114 , 101361. [CrossRef] 161. Kilbey, S.M.; Ankner, J.F. Neutron reflectivity as a tool to understand polyelectrolyte brushes. Curr. Opin. Colloid Interface Sci. 2012 , 17 , 83–89. [CrossRef] 162. Yoshioka, H.; Aoki, Y.; Nonaka, K.; Yamada, N.L.; Kobayashi, M. Effect of molecular weight distribution on the thermal adhesion of polystyrene and PMMA brushes. Polymer 2023 , 264 , 125561. [CrossRef] 163. Jalili, K.; Abbasi, F.; Behboodpour, L. In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly (dimethylsiloxane): An AFM nanoindentation approach. J. Mech. Behav. Biomed. 2019 , 93 , 118–129. [CrossRef] [PubMed] 164. Eskhan, A.; Johnson, D. Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique. Adv. Colloid Interface Sci. 2022 , 310 , 102796. [CrossRef] [PubMed] 165. Riley, J.K.; Matyjaszewski, K.; Tilton, R.D. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions. J. Colloid Interface Sci. 2018 , 526 , 114–1123. [CrossRef] [PubMed] 166. Yuan, J.; Wunder, S.; Warmuth, F. Spherical polymer brushes with vinylimidazolium-type poly (ionic liquid) chains as support for metallic nanoparticles. Polymer 2012 , 53 , 43–49. [CrossRef] 167. Qin, X.; Chen, K.; Cao, L.; Zhang, Y.; Li, L.; Guo, X. Antifouling performance of nano-sized spherical poly ( N -hydroxyethyl acrylamide) brush. Colloids Surf. B 2017 , 155 , 408–414. [CrossRef] [PubMed] 168. Joafshan, M.; Shakeri, A.; Razavi, S.R.; Salehi, H. Gas responsive magnetic nanoparticle as novel draw agent for removal of Rhodamine B via forward osmosis: High water flux and easy regeneration. Sep. Purif. Technol. 2022 , 282 , 119998. [CrossRef] 169. Li, T.H.; Robertson, M.L.; Conrad, J.C. Molecular weight and dispersity affect chain conformation and pH-response in weak polyelectrolyte brushes. Polym. Chem. 2021 , 12 , 6737–6744. [CrossRef] 170. Conrad, J.C.; Robertson, M.L. Shaping the structure and response of surface-grafted polymer brushes via the molecular weight distribution. JACSAu 2023 , 3 , 333–343. [CrossRef] 171. Ramesh, A.; Neelaveni, M.; Tamizhdurai, P.; Ramya, R.; Sasirekha, N.; Shanthi, K. Facile synthesis of poly (benzylamine) brushes stabilized silver nanoparticle catalyst for the abatement of environmental pollutant methylene blue. Mater. Chem. Phys. 2019 , 229 , 42–430. [CrossRef] 172. Li, H.; Chen, G.; Das, S. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Colloids Surf. B 2016 , 147 , 180–190. [CrossRef] [PubMed] 173. Su, N.; Li, H.; Huang, Y.; Zhang, X. Synthesis of salt responsive spherical polymer brushes. J. Nanomater. 2015 , 2015 , 956819. [CrossRef] 174. Currie, E.P.K.; Wagemaker, M.; Cohen Stuart, M.A.; Van Well, A.A. Structure of monodisperse and bimodal brushes. Macro- molecules 1999 , 32 , 9041–9050. [CrossRef] 175. Guo, X.; Ballauff, M. Spatial Dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 2000 , 16 , 8719–8726. [CrossRef] 176. Prucker, O.; Ruhe, J. Synthesis of poly(styrene) monolayers attach to high surface area silica gels through self-assembled monolayers of azo initiators. Nacromolecules 1998 , 31 , 592–601. [CrossRef] 177. Polanowski, P.; Jeszka, J.K.; Matyjaszewski, K. Polymer brushes in pores by ATRP: Monte Carlo simulations. Polymer 2020 , 211 , 123124. [CrossRef] 178. Utz, M.; Begley, M.R. Scaling theory of adsorption-induced stresses in polymer brushes grafted onto compliant structures. J. Mech. Phys. Solids 2008 , 56 , 801–804. [CrossRef] 179. Marsh, D. Scaling and mean-field theories applied to polymer brushes. Biophys. J. 2004 , 86 , 2630–2633. [CrossRef] 180. Manav, M.; Anilkumar, P.; Phani, A.S. Mechanics of polymer brush based soft active materials–theory and experiments. J.Mech. Phys. Solids 2018 , 121 , 296–312. [CrossRef] 181. Adeli, F.; Abbasi, F.; Ghandforoushan, P.; Külahli, H.E.; Meran, M.; Abedi, F.; Ghamkhari, A.; Afif, S. Recent advances in formulation and application of molecular polymer brushes in biomedicine: Therapeutic, diagnostic, and theranostics capabilities. Nanotoday 2023 , 53 , 102010. [CrossRef] 182. Ackerman, D.M.; Delaney, K.; Fredrickson, G.H.; Ganapathysubramanian, B. A finite element approach to self-consistent field theory calculations of multiblock polymers. J. Comput. Phys. 2017 , 331 , 280–296. [CrossRef] 183. Wiebe, M.; Leermakers, F.A.M. Modeling the structure of a polydisperse polymer brush. Polymer 2009 , 50 , 305–316.

Made with FlippingBook Annual report maker