PAPERmaking! Vol8 Nr2 2022

Sustainability 2022 , 14 , 2619

14of 16

Institutional Review Board Statement: Not applicable. Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. Data Availability Statement: The Excel sheet with the matrices and detailed calculations can be made available if desired. Acknowledgments: We sincerely express our gratitude for the support received from the University of Graz and from Jyväskylä University School of Business. We gratefully acknowledge the industrial partners Sappi Austria Produktions-GmbH & Co., KG, Zellstoff Pöls AG, and Mondi Frantschach GmbH, as well as the Competence Centers for Excellent Technologies (COMET), which are promoted by BMVIT, BMDW, Styria and Carinthia and managed by FFG, for their financial support of the K-project FLIPPR2 (Future Lignin and Pulp Processing Research—PROCESS INTEGRATION; FFG project number: 861476). Conflicts of Interest: The authors declare no conflict of interest.

References 1. Näyhä, A.; Pesonen, H.-L. Strategic Change in the Forest Industry Toward the Biorefining Business. Technol. Forecast. Soc. Chang. 2014 , 81 , 259–271. [CrossRef] 2. De Besi, M.; McCormick, K. Toward a Bioeconomy in Europe: National, regional and industrial strategies. Sustainability 2015 , 7 , 10461–10478. [CrossRef] 3. Temmes, A.; Peck, P. Do forest biorefineries fit with working principles of a circular bioeconomy? A case of Finnish and Swedish initiatives. For. Policy Econ. 2020 , 110 , 101896. [CrossRef] 4. Wenger, J.; Stern, T. Reflection on the research on and implementation of biorefinery systems—A systematic literature review with a focus on feedstock. Biofuels Bioprod. Biorefining 2019 , 13 , 1347–1364. [CrossRef] 5. Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010 , 51 , 1412–1421. [CrossRef] 6. Ahlgren, S.; Björklund, A.; Ekman, A.; Karlsson, H.; Berlin, J.; Börjesson, P.; Ekvall, T.; Finnveden, G.; Janssen, M.; Strid, I. Review of methodological choices in LCA of biorefinery systems—Key issues and recommendations. Biofuels Bioprod. Biorefining 2015 , 9 , 606–619. [CrossRef] 7. Schröder, T.; Lauven, L.-P.; Sowlati, T.; Geldermann, J. Strategic planning of a multi-product wood-biorefinery production system. J. Clean. Prod. 2019 , 211 , 1502–1516. [CrossRef] 8. Hildebrandt, J.; O’Keeffe, S.; Bezama, A.; Thrän, D. Revealing the Environmental Advantages of Industrial Symbiosis in Wood-Based Bioeconomy Networks An Assessment From a Life Cycle Perspective. J. Ind. Ecol. 2018 , 23 , 808–822. [CrossRef] 9. Näyhä, A. Transition in the Finnish forest-based sector: Company perspectives on the bioeconomy, circular economy and sustainability. J. Clean. Prod. 2019 , 209 , 1294–1306. [CrossRef] 10. Budzinski, M.; Cavalett, O.; Nitzsche, R.; Hammer Strømman, A. Assessment of lignocellulosic biorefineries in Germany using a hybrid LCA multi-objective optimization model. J. Ind. Ecol. 2019 , 23 , 1172–1185. [CrossRef] 11. Gonz á lez-Cruz, L.A.; Morales-Mendoza, L.F.; Aguilar-Lasserre, A.A.; Azzaro-Pantel, C.; Mart í nez-Isidro, P.; Meza-Palacios, R. Optimal ecodesign selection for biodiesel production in biorefineries through multicriteria decision making. Clean Technol. Environ. Policy 2021 , 23 , 2337–2356. [CrossRef] 12. Lundberg, V.; Bood, J.; Nilsson, L.; Axelsson, E.; Berntsson, T.; Svensson, E. Converting a kraft pulp mill into a multi-product biorefinery: Techno-economic analysis of a case mill. Clean Technol. Environ. Policy 2014 , 16 , 1411–1422. [CrossRef] 13. Sandin, G.; Røyne, F.; Berlin, J.; Peters, G.M.; Svanström, M. Allocation in LCAs of biorefinery products: Implications for results and decision-making. J. Clean. Prod. 2015 , 93 , 213–221. [CrossRef] 14. Hermansson, F.; Janssen, M.; Svanström, M. Allocation in life cycle assessment of lignin. Int. J. Life Cycle Assess. 2020 , 25 , 1620–1632. [CrossRef] 15. Frischknecht, R. Allocation in life cycle inventory analysis for joint production. Int. J. Life Cycle Assess. 2000 , 5 , 85–95. [CrossRef] 16. Njakou Djomo, S.; Knudsen, M.T.; Parajuli, R.; Andersen, M.S.; Ambye-Jensen, M.; Jungmeier, G.; Gabrielle, B.; Hermansen, J.E. Solving the multifunctionality dilemma in biorefineries with a novel hybrid mass–energy allocation method. GCB Bioenergy 2017 , 9 , 1674–1686. [CrossRef] 17. Weidema, B.P. Avoiding co-product allocation in life cycle assessment. J. Ind. Ecol. 2000 , 4 , 11–33. [CrossRef] 18. Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guin é e, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009 , 91 , 1–21. [CrossRef] 19. Cherubini, F.; Strømman, A.H.; Ulgiati, S. Influence of allocation methods on the environmental performance of biorefinery products—A case study. Resour. Conserv. Recycl. 2011 , 55 , 1070–1077. [CrossRef] 20. Heimersson, S.; Morgan-Sagastume, F.; Peters, G.M.; Werker, A.; Svanström, M. Methodological issues in life cycle assessment of mixed-culture polyhydroxyalkanoate production utilising waste as feedstock. New Biotechnol. 2014 , 31 , 383–393. [CrossRef] 21. Gasparatos, A.; Scolobig, A. Choosing the most appropriate sustainability assessment tool. Ecol. Econ. 2012 , 80 , 1–7. [CrossRef]

Made with FlippingBook - Online magazine maker