PAPERmaking! Vol8 Nr2 2022

Polymers 2021 , 13 , 2485

15of 16

Table A1. The values of the parameters used for plotting the vapour pressure as a function of temperature and solids content in Figure A1.

Parameter

Value

3 /mol 3 /mol

Molar volume of water ( v w ) Molar volume of cellulose ( v c )

18.02 cm 101.3 cm

Flory–Huggins interaction parameter ( χ )

0.67 [35]

1000kg/m 3 1600kg/m 3

Density of water ( ρ w )

Density of (crystal) cellulose ( ρ c ) Lignin content of fibre ( c l )

25%

References 1. Ourworldindata. Available online: https://ourworldindata.org/plastic-pollution (accessed on 3 March 2021). 2. Östlund, S.; Niskanen, K. Mechanics of Paper Products ; De Gruyter: Berlin, Germany, 2021; ISBN 9783110617412. 3. Karlsson, M.; Paltakari, J. Papermaking Science and Technology ; Karlsson, M., Ed.; Papermakin; Fapet Oy: Atlanta, GA, USA, 2008. 4. Norgren, S.; Pettersson, G.; Höglund, H. Strong paper from spruce CTMP—Part II: Effect of pressing at nip press temperatures above the lignin softening temperature. Nord. Pulp Pap. Res. J. 2018 , 33 , 142–149. [CrossRef] 5. Joelsson, T.; Pettersson, G.; Norgren, S.; Svedberg, A.; Höglund, H.; Engstrand, P. High strength paper from high yield pulps by means of hot-pressing. Nord. Pulp Pap. Res. J. 2020 , 35 , 195–204. [CrossRef] 6. Joelsson, T.; Pettersson, G.; Norgren, S.; Svedberg, A.; Höglund, H.; Engstrand, P. Improving paper wet-strength by increasing lignin content and hot-pressing temperature. Tappi J. 2020 , 19 , 487–499. [CrossRef] 7. Good, R.J. Contact Angles and the Surface Free Energy of Solids BT—Surface and Colloid Science: Volume 11: Experimental Methods ; Good, R.J., Stromberg, R.R., Eds.; Springer: Boston, MA, USA, 1979; pp. 1–29, ISBN 978-1-4615-7969-4. 8. Vaziri, M.; Karlsson, O.; Abrahamsson, L.; Lin, C.F.; Sandberg, D. Wettability of welded wood-joints investigated by the Wilhelmy method: Part 1. Determination of apparent contact angles, swelling, and water sorption. Holzforschung 2021 , 75 , 65–74. [CrossRef] 9. Karlsson, O.; Torniainen, P.; Dagbro, O.; Granlund, K.; Mor é n, T. Presence of water-soluble compounds in thermally modified wood: Carbohydrates and furfurals. BioResources 2012 , 7 , 3679–3689. [CrossRef] 10. Gupta, P.R.; Rezanowich, A.; Goring, D.A.I. The adhesive properties of lignin. Pulp Pap. Mag. Can 1962 , 63 , 21–30. 11. Goring, D.A.I. Thermal softening of lignin, hemicelluolose and cellulose. PulpPap 1963 , 64 , T517–T527. 12. Back, E.L.; Salmen, N.L. Glass Transitions of Wood Components Hold Implications for Molding and Pulping Processes. Tappi 1982 , 65 , 107–110. 13. Joelsson, T.; Persson, E.; Pettersson, G.; Norgren, S.; Svedberg, A.; Engstrand, P. The impact of sulfonation and hot-pressing of low-energy high temperature chemi-thermomechanical pulp. Holzforsch 2021 , submitted. 14. Thakur, V.K.; Thakur, M.K.; Raghavan, P.; Kessler, M.R. Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustain. Chem. Eng. 2014 , 2 , 1072–1092. [CrossRef] 15. Bajpai, P. Pulp and Paper Production Processes and Energy Overview ; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 9780128034118. 16. Pettersson, G.; Norgren, S.; Engstrand, P.; Rundlöf, M.; Höglund, H. Aspects on bond strength in sheet structures from TMP and CTMP—A review. Nord. Pulp Pap. Res. J. 2021 , 36 , 177–213. [CrossRef] 17. Joelsson, T.; Svedberg, A.; Norgren, S.; Pettersson, G.; Berg, J.-E.; Garcia-Lindgren, C.; Engstrand, P. Unique steel belt press technology for high strength papers from high yield pulp. SN Appl. Sci. 2021 , 3 , 561. [CrossRef] 18. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 7 January 1998; pp. 839–846. 19. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979 , 9 , 62–66. [CrossRef] 20. Turpeinen, T.; Myllys, M.; Kekalainen, P.; Timonen, J. Interface Detection Using a Quenched-Noise Version of the Edwards- Wilkinson Equation. IEEE Trans. Image Process. 2015 , 24 , 5696–5705. [CrossRef] [PubMed] 21. Hildebrand, T.; Rüegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 1997 , 185 , 67–75. [CrossRef] 22. Ali, C.M.; Jean-Francis, B.; Elodie, B.; Patrice, M. 3D synchrotron X-ray microtomography for paper structure characterization of z-structured paper by introducing micro nanofibrillated cellulose. Nord. Pulp Pap. Res. J. 2016 , 31 , 219–224. [CrossRef] 23. Kellogg, R.M.; Wangaard, F.F. Variation in the cell-wall density of wood. Wood Fiber Sci. 1969 , 1 , 180–204. 24. Li, K.; Wang, S.; Chen, H.; Yang, X.; Berglund, L.A.; Zhou, Q. Self-Densification of Highly Mesoporous Wood Structure into a Strong and Transparent Film. Adv. Mater. 2020 , 32 , 2003653. [CrossRef] 25. Sim ã o, J.P.F.; Carvalho, M.G.V.S.; Baptista, C.M.S.G. Heterogeneous studies in pulping of wood: Modelling mass transfer of dissolved lignin. Chem. Eng. J. 2011 , 170 , 264–269. [CrossRef] 26. Kaarlo, N. Paper Physics ; Paperi ja Puu Oy: Atlanta, GA, USA, 2008; ISBN 9525216292. 27. Niskanen, K. Mechanics of Paper Products ; De Gruyter: Berlin, Germany, 2011; ISBN 9783110254617. 28. Lucenius, J.; Valle-Delgado, J.J.; Parikka, K.; Österberg, M. Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites. J. Colloid Interface Sci. 2019 , 555 , 104–114. [CrossRef]

Made with FlippingBook - Online magazine maker