PAPERmaking! Vol6 Nr1 2020

PAPER making! FROM THE PUBLISHERS OF PAPER TECHNOLOGY INTERNATIONAL  Volume 6, Number 1, 2020

corrugated paper with a basis weight of 133 g/m2 was implemented in an actual project in a paper mill. View Full-Text PRINTING Effect of Papermaking Conditions on the Ink Absorption and Overprint Accuracy of Paper, Yuanfeng Dong et al, Bioresources, Vol.15(1). The ink-absorption capacity is an important factor for evaluating the printing quality of paper. In this study, the effects of different parameters of papermaking on the ink-absorption capacity of paper were investigated. The results showed that hardwood pulp exhibited better performance in increasing the absorptivity of paper compared with softwood pulp. When the content of hardwood pulp in paper was increased from 0% to 100%, the ink mark length decreased from 5.1 cm to 4.3 cm. Furthermore, a basis weight change from 100 g/m2 to 60 g/m2 increased the ink-absorption capacity, as revealed by a decrease of the ink mark length from 4.8 cm to 4.4 cm. Both sizing agent and beating degree affected the ink-absorption performance of the paper. For example, a shorter ink mark length of 5.1 cm was obtained at a low beating degree of 5000 r compared with that of 5.1 cm at 15000 r. A New Kind of Nonconventional Luminogen Based on Aliphatic Polyhydroxyurethane and Its Potential Application in Ink-Free Anticounterfeiting Printing, Zihao Feng et al, Appl. Mater. Interfaces, Vol.12(9) . Organic luminogens have extensive applications due to their unique photophysical properties. In recent years, nonconjugated organic luminogens, in contrast to traditional conjugated luminogens, have gained much attention because of their facile preparation, environmental friendliness, and biocompatibility. In this study, a new kind of nonconventional luminogen based on dynamic covalent cross-linked polyhydroxyurethane is reported for the first time. The new luminogen not only exhibits intrinsic strong fluorescent emission in the solid state but also possesses high mechanical properties along with good shape memory and self-healing properties. In addition, the new luminogens are synthesized from aliphatic polyfunctional cyclic carbonate and amines via a much more straightforward method, avoiding the use of toxic isocyanates. Investigations indicated that the intrinsic luminescence of the resultant luminogens was induced by the cross-linking of polymer chains and could be well tuned by controlling the degree of cross-linking. By taking advantage of the unique characteristics of the resultant polymer luminogens, we further developed a facile method, named “light - mediated ink- free screen printing”, f or anticounterfeiting paper fabrication. Different from traditional ink-based printing technology, the new method used UV-light instead of expensive security ink to encode anticounterfeiting information on natural cellulose paper. The anticounterfeiting information is stable under various wet conditions, showing promising applications in the fast-growing counterfeiting of pharmaceuticals, packaging, and the food industry. PULP / PULPING Ecofriendly and Innovative Processing of Hemp Hurds Fibers for Tissue and Towel Paper, Ved Naithani et al, BioResources, Vol.15(1) . An innovative approach for preparing hemp fibers from hemp hurds for use in tissue and towel grades of paper is described. Hemp hurds are a low value by-product of industrial hemp processing that are generally used for animal bed litter. Tissue paper was fabricated from hemp hurd fibers by following three pulping processes: autohydrolysis (hydrothermal), sodium carbonate-based defibration, and high yield kraft pulping, and benchmarked against hardwood pulp. To meet industrial standards, hardwood and hemp pulp fibers were mixed at a dry mass ratio of 75:25, from which tissue paper sheets were prepared. Desirable tissue paper properties, such as water absorption, burst resistance, softness, and tensile strength (dry

 

Technical Abstracts 

Page 12 of 24

Made with FlippingBook Digital Publishing Software