PAPERmaking! Vol6 Nr2 2020

Cellulose (2020) 27:7215–7225

7225

Hii C, Gregersen ØW, Chinga-Carrasco G, Eriksen Ø (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27:388 Kamel S (2007) Nanotechnology and its applications in ligno- cellulosic composites, a mini review. Express Polym Lett 1:546–575. https://doi.org/10.3144/expresspolymlett. 2007.78 Kangas H, Lahtinen P, Sneck A et al (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nord Pulp Pap Res J 29:129–143 Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Sven Pap- perstidning 87:R48–R53 Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466. https://doi.org/10.1002/anie.201001273 Laitinen O, Suopaja¨rvi T, O¨ sterberg M, Liimatainen H (2017) Hydrophobic, superabsorbing aerogels from choline chlo- ride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl Mater Interfaces 9:25029–25037. https://doi.org/10.1021/ acsami.7b06304 Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibril- lated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735– 764. https://doi.org/10.1016/j.carbpol.2012.05.026 Li P, Sirvio¨ JA, Haapala A, Liimatainen H (2017) Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl Mater Interfaces 9:2846–2855. https://doi.org/10.1021/acsami.6b13625 Li P, Sirvio¨ JA, Asante B, Liimatainen H (2018) Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Carbohydr Polym 199:219–227. https:// doi.org/10.1016/j.carbpol.2018.07.024 Mashkour M, Afra E, Resalati H, Mashkour M (2015) Moderate surface acetylation of nanofibrillated cellulose for the improvement of paper strength and barrier properties. RSC Adv 5:60179–60187. https://doi.org/10.1039/C5RA081 61K Missoum K, Marto¨ıa F, Belgacem MN, Bras J (2013) Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Ind Crops Prod 48:98–105. https://doi.org/10.1016/j.indcrop.2013.04.013 Nourbakhsh A, Ashori A (2010) Particleboard made from waste paper treated with maleic anhydride. Waste Manag Res 28:51–55. https://doi.org/10.1177/0734242X09336463 Ojala J, Visanko M, Laitinen O et al (2018) Emulsion stabi- lization with functionalized cellulose nanoparticles fabri- cated using deep eutectic solvents. Molecules 23:2765. https://doi.org/10.3390/molecules23112765 Rattaz A, Mishra SP, Chabot B, Daneault C (2011) Cellulose nanofibres by sonocatalysed-TEMPO-oxidation. Cellulose 18:585–593. https://doi.org/10.1007/s10570-011-9529-8 Rojo E, Peresin MS, Sampson WW et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical,

barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/ C4GC02398F Sehaqui H, Zhou Q, Berglund LA (2013) Nanofibrillated cel- lulose for enhancement of strength in high-density paper structures. Nord Pulp Pap Res J 28:182–189 Selka¨la¨ T, Sirvio¨ JA, Lorite GS, Liimatainen H (2016) Anion- ically stabilized cellulose nanofibrils through succinylation pretreatment in urea-lithium chloride deep eutectic solvent. Chemsuschem. https://doi.org/10.1002/cssc.201600903 Singh BS, Lobo HR, Shankarling GS (2012) Choline chloride based eutectic solvents: magical catalytic system for car- bon-carbon bond formation in the rapid synthesis of b - hydroxy functionalized derivatives. Catal Commun 24:70–74. https://doi.org/10.1016/j.catcom.2012.03.021 Siro´ I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y Sirvio¨ JA (2018) Cationization of lignocellulosic fibers with betaine in deep eutectic solvent: facile route to charge stabilized cellulose and wood nanofibers. Carbohydr Polym 198:34–40. https://doi.org/10.1016/j.carbpol.2018. 06.051 Sirvio¨ JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre- treatment for nanofibrillation of wood cellulose. Green Chem 17:3401–3406. https://doi.org/10.1039/C5GC0039 8A Spence KL, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical proper- ties for packaging applications. Cellulose 17:835–848. https://doi.org/10.1007/s10570-010-9424-8 Su J, Zhang L, Batchelor W, Garnier G (2014) Paper engineered with cellulosic additives: effect of length scale. Cellulose 21:2901–2911. https://doi.org/10.1007/s10570-014-0298-z Suopaja¨rvi T, Sirvio¨ JA, Liimatainen H (2017) Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr Polym 169:167–175. https://doi.org/10. 1016/j.carbpol.2017.04.009 Tajik M, Torshizi HJ, Resalati H, Hamzeh Y (2018) Effects of cationic starch in the presence of cellulose nanofibrils on structural, optical and strength properties of paper from soda bagasse pulp. Carbohydr Polym 194:1–8. https://doi. org/10.1016/j.carbpol.2018.04.026 Visanko M, Sirvio¨ JA, Piltonen P et al (2017) Mechanical fabri- cation of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose 24:4173–4187. https://doi.org/10.1007/s10570-017-1406-7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

123

Made with FlippingBook - Online catalogs