PAPERmaking! Vol6 Nr2 2020

LEEANDSEO

18of 19

5. Wang L, Wang Z, Liu S. An effective multivariate time series classification approach using echo state network and adaptive differential evolution algorithm. Exp Syst Appl . 2016;43:237-249. 6. Christ M, Kempa-Liehr AW, Feindt M. Distributed and parallel time series feature extraction for industrial big data applications; 2016. arXiv preprint arXiv:1610.07717. 7. Sykacek P, Roberts SJ. Bayesian time series classification. Advances in Neural Information Processing Systems, Vancouver, Canada in 2001 . Cambridge, MA: MIT Press; 2002:937-944. 8. Esmael B, Arnaout A, Fruhwirth RK, Thonhauser G. Improving time series classification using Hidden Markov models. Paper presented at: Proceedings of the 2012 12th International Conference on Hybrid Intelligent Systems (HIS), Pune, India; 2012:502-507; IEEE. 9. Jovic´ A, Brkic´ K, Bogunovic´ N. Decision tree ensembles in biomedical time-series classification. Paper presented at: Proceedings of the Joint DAGM (German Association for Pattern Recognition) and OAGM Symposium; 2012:408-417; Springer, Berlin, Heidelberg. 10. Eads DR, Hill D, Davis S, et al. Genetic algorithms and support vector machines for time series classification. Applications and Sci- ence of Neural Networks, Fuzzy Systems, and Evolutionary Computation, Seattle, Washington . Vol 4787. Bellingham, Washington: SPIE; 2002:74-85. 11. Cui Z, Chen W, Chen Y. Multi-scale convolutional neural networks for time series classification; 2016. arXiv preprint arXiv:1603.06995. 12. Baesens B, Van Gestel T, Viaene S, Stepanova M, Suykens J, Vanthienen J. Benchmarking state-of-the-art classification algorithms for credit scoring. J Operat Res Soc . 2003;54(6):627-635. https://doi.org/10.1057/palgrave.jors.2601545. 13. Lines J, Taylor S, Bagnall A. Hive-cote: the hierarchical vote collective of transformation-based ensembles for time series classifica- tion. Paper presented at: Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain: 2016:1041-1046. 14. Tan CW, Petitjean F, WGI. FastEE: fast ensembles of elastic distances for time series classification. Data Mining Knowl Discov . 2020;34:231-272. https://doi.org/10.1007/s10618-019-00663-x. 15. Orsenigo C, Vercellis C. Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification. Pattern Recognit . 2010;43(11):3787-3794. 16. Weng X, Shen J. Classification of multivariate time series using two-dimensional singular value decomposition. Knowl Based Syst . 2008;21(7):535-539. 17. Zhang C, Yan H, Lee S, Shi J. Multiple profiles sensor-based monitoring and anomaly detection. J Qual Technol . 2018;50(4):344-362. 18. Rodríguez JJ, Alonso CJ. Support Vector Machines of Interval-Based Features for Time Series Classification . New York, NY: Springer; 2004:244-257. 19. Kadous MW, Sammut C. Classification of multivariate time series and structured data using constructive induction. Mach Learn . 2005;58(2-3):179-216. 20. Li C, Khan L, Prabhakaran B. Feature Selection for Classification of Variable Length Multiattribute Motions . New York, NY: Springer; 2007:116-137. 21. Kim J, Huang Q, Shi J, and Chang T. Online Multichannel Forging Tonnage Monitoring and Fault Pattern Discrimination Using Principal Curve. ASME. J. Manuf. Sci. Eng . 2006;128(4):944-950. https://doi.org/10.1115/1.2193552. 22. Chang SI, Yadama S. Statistical process control for monitoring non-linear profiles using wavelet filtering and B-spline approximation. Int J Product Res . 2010;48(4):1049-1068. https://doi.org/10.1080/00207540802454799. 23. Paynabar K, Jin J, Pacella M. Analysis of multichannel nonlinear profiles using uncorrelated multilinear principal component analysis with applications in fault detection and diagnosis. IIETrans . 2013;45(11):1235-1247. 24. Grasso M, Colosimo BM, Pacella M. Profile monitoring via sensor fusion: the use of PCA methods for multi-channel data. Int J Product Res . 2014;52(20):6110-6135. https://doi.org/10.1080/00207543.2014.916431. 25. Zheng Y, Liu Q, Chen E, Ge Y, Zhao JL. Time series classification using multi-channels deep convolutional neural networks. Paper presented at: Proceedings of the International Conference on Web-Age Information Management; 2014:298-310; Springer, Cham. 26. He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng . 2009;21(9):1263-1284. 27. Estabrooks A, Jo T, Japkowicz N. A multiple resampling method for learning from imbalanced data sets. Comput Intell . 2004;20(1): 18-36. 28. Ting KM. An instance-weighting method to induce cost-sensitive trees. IEEE Trans Knowl Data Eng . 2002;14(3):659-665. 29. Attenberg J, Provost F. Why label when you can search? Alternatives to active learning for applying human resources to build classification models under extreme class imbalance. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2010:423-432. 30. Kazerouni A, Zhao Q, Xie J, Tata S, Najork M. Active learning for skewed data sets; 2020. arXiv preprint arXiv:2005.11442. 31. Fang M, Li Y, Cohn T. Learning how to active learn: a deep reinforcement learning approach; 2017; arXiv preprint arXiv:1708.02383. 32. Haussmann M, Hamprecht FA, Kandemir M. Deep active learning with adaptive acquisition; 2019. arXiv preprint arXiv:1906.11471. 33. Li X, Ding Q, Sun JQ. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab Eng Syst Safety . 2018;172:1-11. 34. Baradwaj BK, Pal S. Mining educational data to analyze students; 2012. arXiv preprint arXiv:1201.3417. 35. Srikanthan S, Kumar A, Gupta R. Implementing the dynamice warping algorithm in multithreaded environments for real time and unsu- pervised pattern discovery. Paper presented at: Proceedings of the 2011 2nd International Conference on Computer and Communication Technology (iccct-2011), Allahabad, India; 2011:394-398. 36. Sakoe H. Dynamic-programming approach to continuous speech recognition. Paper presented at: Proceedings International Congress of Acoustics; 1971; Budapest.

Made with FlippingBook - Online catalogs