PAPERmaking! Vol5 Nr1 2019

3606

Cellulose (2018) 25:3595–3607

od soluble cellulose: a repulpable adhesive for wet and dry cellulosic substrates. ACS Appl Mater Interfaces 7:18750–18758 Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodriuez A, Laine J, Rojas O (2012) Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19(6):2179–2193 Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nano- fibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–170 Ga¨llstedt M, Brottman A, Hedenqvist MS (2005) Packaging related properties of protein- and chitosan-coated paper. Packag Technol Sci 18(4):161–170 Garcia MA, Martino MN, Zartizky NE (1999) Edible starch films and coating char-acterization: scanning electron microscopy, water vapor transmission and gas permeabil- ities. Scanning 21(5):358–420 Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567 Hansen N, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9:1493–1505 Henriksson M, Berglund LA, Isaksson P, Lindstro¨m T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9(6):1579–1587 Hubbe MA, Gardner DJ, Shen W (2015) Contact angles and wettability of cellulosic surfaces: a review of proposed mechanisms and test strategies. BioResources 10(4):8657–8749 Hubbe MA, Ferrer A, Tyagi P, Yin Y, Salas C, Pal L, Rojas OJ (2017) Nanocellulose in thin films. coatings and plies for packaging applications: a review. BioResources 12(1):2143–2333 Hult E-L, Ropponen J, Poppius-Levlin K, Ohra-Aho T, Tam- minen T (2013) Enhancing the barrier properties of paper board by a novel lignin coating. Ind Crops Prod 50:694–700 Jie XM, Cao YM, Qin JJ, Liu JH, Yuan Q (2005) Influence of drying method on morphology and properties of asym- metric cellulose hollow fiber membrane. J Membr Sci 246(2):157–165 Johnson DL (1969) Process for strengthening swellable fibrous material with an amine oxide and the resulting material. US Patent 3447956 Kalashnikova I, Bizot H, Cathala B, Capron I (2012) Modula- tion of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. Biomacromol 13:267–275 Kangas H, Lahtinen P, Sneck A, Saariaho AM, Laitinen O, Helle´n E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nordic Pulp Pap Res J 29(1):129–143 Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci Food Saf 9(1):82–91 Kosan B, Michels Ch, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15(1):59–66 Kulpinski P (2007) Cellulose fibers modified by hydrophobic type polymer. J Appl Polym Sci 104:398–409

presented method may be beneficial for the production of specialty materials for which quality and specific properties play a decisive role in relation to the efficiency of the production process and also to the price of the final product. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unre- stricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com- mons license, and indicate if changes were made. Open Access

References

Alves L, Medronho B, Antunes FE, Romano A, Miguel GM, Lindman B (2015) On the role of hydrophobic interactions in cellulose dissolution andregeneration: colloidal aggre- gates and molecular solutions. Colloids Surf A Physic- ochem Eng Asp 483:257–263 Alves L, Medronho B, Antunes FE, Topgaard D, Lindman B (2016) Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents. Cellulose 23:247–258 Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment—a review. Packag Technol Sci 21:339–373 Biermann O, Hadicke E, Koltzenburg S, Muller-Plathe F (2001) Hydrophilicity and lipophilicity of cellulose crystal sur- faces. Angew Chem Int Ed 40(20):3822–3825 Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose- N -methylmorpholine N -oxide- water solutions. Cellulose 6:179–188 Cao NJ, Xu Q, Chen CS, Gong CS, Chen LF (1994) Cellulose hydrolysis using zinc-chloride as a solvent and catalyst. Appl Biochem Biotechnol 45(6):521–530 Chen JH, Guan Y, Wang K, Xu F, Sun RC (2015) Regulating effect of hemicelluloses on the preparation and properties of composite Lyocell fibers. Cellulose 22(3):1505–1516 Choi JO, Jitsunari F, Asakawa F, Park HJ, Lee DS (2002) Migration of surrogate contaminants in paper and paper- board into water through polyethylene coating layer. Food Addit Contam 19(12):1200–1206 Dufresne A (2012) Nanocellulose: from nature to high perfor- mance tailored materials. Walter De Gruyter Gmbh, Berlin. ISBN 9783110254563 Dufresne A (2013) Nanocellulose: a new ageless bionanoma- terial. Mater Today 16:220–227. https://doi.org/10.1016/j. mattod.2013.06.004 Erdman A, Kulpinski P, Olejnik K (2016) Application of nanocomposite cellulose fibers with luminescent properties to paper functionalization. Cellulose 23(3):2087–2097 Fall AB, Burman A, Wa˚gberg L (2014) Cellulosic nanofibrils from eucalyptus, acacia and pine fibers. Nordic Pulp Pap Res J 29(1):129–143 Ferreira SE, Lanzoni ME, Costa CAR, Deneke C, Bernardes JS, Galembeck F (2015) Adhesive and reinforcing properties

123

Made with FlippingBook Digital Publishing Software