PAPERmaking! Vol4 Nr2 2018

Cellulose (2018) 25:1353–1364

1363

Gulrajani ML (2010) Colour measurement principles, advances and industrial applications. Elsevier, Amsterdam Gutie´rrez L, Sa´nchez C, Batlle R, Ner´ın C (2009) New antimicrobial active package for bakery products. Trends Food Sci Technol 20:92–99 He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406 Kim S, Choi JE, Choi J et al (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23:1076–1084 Kukharenko O, Bardeau J, Zaets I et al (2014) Promising low cost antimicrobial composite material based on bacterial cellulose and polyhexamethylene guanidine hydrochlo- ride. Eur Polym J 60:247–254 Kwiatkowska M, Wa _ zny R, Turnau K, Wo´jcik A (2016) Fungi as deterioration agents of historic glass plate negatives of Brandys family collection. Int Biodeterior Biodegrad 115:133–140 Langauer-Lewowicka H, Pawlas K (2015) Nanocza˛stki srebra - zastosowanie i zagro _ zenie dla zdrowia i s´rodowiska. Med S´rodowiskowa 18:7–11 Lauriol J-M, Froment P, Pla F, Robert A (1987) Molecular weight distribution of cellulose by on-line size exclusion chromatography—low angle laser light scattering part I: basic experiments and treatment of data. Holzforschung 41:109–113 Lee JS, Jeong NC, Yoon KB (2006) Method for preparing composites of zeolite-fiber substrate. US Patent No. 20060199724 Lerwill A, Townsend JH, Liang H et al (2008) A portable micro- fading spectrometer for versatile lightfastness testing. e-Preserv Sci 5:17–28 Littunen K, Snoei J, Castro D et al (2016) Synthesis of cation- ized nanofibrillated cellulose and its antimicrobial prop- erties. Eur Polym J 75:116–124 Łojewska J, Jedrzejczyk RJ, Łojewski T, et al (2015) Modified nanocomposite material, method for its production and its application. WO Patent No. 2015170303 A1 Łojewski T, Zie˛ba K, Knapik A et al (2010) Evaluating paper degradation progress. Cross-linking between chromato- graphic, spectroscopic and chemical results. Appl Phys A 100:809–821 Łojewski T, Thomas J, Goła˛b R et al (2011) Note: light ageing with simultaneous colorimetry via fibre optics reflection spectrometry. Rev Sci Instrum 82:76102 Mackevica A, Olsson ME, Hansen SF (2016) Silver nanoparti- cle release from commercially available plastic food con- tainers into food simulants. J Nanoparticle Res 18:1–11 Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanoparticle Res 12:1531–1551 Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its com- parison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281 Matsuura T, Abe Y, Sato Y et al (1997) Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J Dent 25:373–377

Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976 Nassar MA, Youssef AM (2012) Mechanical and antibacterial properties of recycled carton paper coated by PS/Ag nanocomposites for packaging. Carbohydr Polym 89:269–274 O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellu- lose: a review. Bioresour Technol 99:6709–6724 Odabas¸ ME, C¸ inar C¸ , Akc¸a G et al (2011) Short-term antimi- crobial properties of mineral trioxide aggregate with incorporated silver-zeolite. Dent Traumatol 27:189–194 Panyala NR, Pen˜a-Me´ndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129 Pawcenis D, Thomas JL, Łojewski T et al (2015) Towards determination of absolute molar mass of cellulose polymer by size exclusion chromatography with mulitple angle laser light scattering detection. J Chromatogr A 1409:53–59 Restuccia D, Spizzirri UG, Parisi OI et al (2010) New EU reg- ulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21:1425–1435 Russel AD, Hugo W (1994) Antimicrobial activity and acton of silver. Prog Med Chem 31:351–370 Seaton A, Tran L, Aitken R et al (2010) Nanoparticles, human health hazard and regulation. J R Soc Interface 7(Suppl 1):S119–S129 Stol R, Pedersoli JL, Poppe H, Kok WT (2002) Application of size exclusion electrochromatography to the microanalyt- ical determination of the molecular mass distribution of celluloses from objects of cultural and historical value. Anal Chem 74:2314–2320 Suslow T, Crops V (1997) Performance of zeolite based prod- ucts in ethylene removal. Perish Handl Q (92):32–33 Takai K, Ohtsuka T, Senda Y et al (2002) Antibacterial prop- erties of antimicrobial-finished textile products. Microbiol Immunol 46:75–81 Taniguchi A, Miyake K, Kurihara Y (2006) Antibacterial zeolite and antibacterial resin composition. WO Patent No. 2007037195 A1 TAPPI (1996) Tappi T 231 cm-96: Zero-span breaking strength of pulp (dry zero-span tensile). 1–11 Venous A (1999) Antimicrobial-impregnated central venous. N Engl J Med 340:1761–1762 Vermeiren L, Devlieghere F, Van Beest M et al (1999) Devel- opments in the active packaging of foods. Trends Food Sci Technol 10:77–86 Vukoje ID, Dzˇunuzovic´ ES, Vodnik VV et al (2014) Synthesis, characterization, and antimicrobial activity of poly(GMA- co-EGDMA) polymer decorated with silver nanoparticles. J Mater Sci 49:6838–6844 Wang JX, Wen LX, Wang ZH, Chen JF (2006) Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater Chem Phys 96:90–97 Yang FC, Wu KH, Liu MJ et al (2009) Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material. Mater Chem Phys 113:474–479

123

Made with FlippingBook Ebook Creator