View Article Online
Paper
Green Chemistry
5 R. J. Moon, A. Martini, J. Nairn, J. Simonsen and J. Youngblood, Chem. Soc. Rev. , 2011, 40 , 3941 – 3994. 6 P. A. Larsson, L. A. Berglund and L. Wågberg, Cellulose , 2014, 21 , 323 – 333. 7 P. A. Larsson, L. A. Berglund and L. Wågberg, Biomacro- molecules , 2014, 15 , 2218 – 2223. 8 T. Morooka and M. Norimoto, Sen ’ i Gakkaishi , 1991, 47 , 328 – 333. 9 T. Morooka, M. Norimoto and T. Yamada, J. Appl. Polym. Sci. , 1989, 38 , 849 – 858. 10 H. Zhao and N. Heindel, Pharm. Res. , 1991, 8 , 400 – 402. 11 L. Segal, J. J. Creely, A. E. Martin and C. M. Conrad, Text. Res. J. , 1959, 29 , 786 – 794. 12 W. D. Callister, Fundamentals of materials science and engi- neering: an interactive e-text , Wiley, New York, 2001. 13 N. Guigo, K. Mazeau, J.-L. Putaux and L. Heux, Cellulose , 2014, 21 , 4119 – 4133. 14 J. Sirviö, U. Hyväkkö, H. Liimatainen, J. Niinimäki and O. Hormi, Carbohydr. Polym. , 2011, 83 , 1293 – 1297. 15 S. H. Zeronian, Sven. Papperstidn. , 1963, 18 , 707 – 710. 16 J. E. Stone, A. M. Scallan and B. Abrahamson, Sven. Papper- stidn. , 1968, 71 , 687 – 694. 17 S. Koprivica, R. Scholz, W. Bauer, W. Roggenstein, T. Rosenau and A. Potthast, Regeneration of aqueous peri- odate solution from dialdehyde cellulose production by ozone treatment determined by RPHPLC with UV detec- tion, in 8th ISWFPC International Symposium on Wood, Fibre and Pulping Chemistry Conference , Vienna, Austria, ed. J. Hell, S. Böhmdorfer, A. Potthast and T. Rosenau, Vienna, Austria, 2015. 18 H. Liimatainen, J. Sirviö, H. Pajari, O. Hormi and J. Niinimäki, J. Wood Chem. Technol. , 2013, 33 , 258 – 266. 19 T. Kemmitt and G. J. Gainsford, Int. J. Hydrogen Energy , 2009, 34 , 5726 – 5731. 20 W. Kasai, T. Morooka and M. Ek, Cellulose , 2014, 21 , 769 – 776. 21 K. M. Furuheim, D. E. Axelson and T. Helle, Nord. Pulp Pap. Res. J. , 2003, 18 , 168 – 175. 22 H. Nilsson, S. Galland, P. T. Larsson, E. K. Gamstedt, T. Nishino, L. A. Berglund and T. Iversen, Compos. Sci. Technol. , 2010, 70 , 1704 – 1712. 23 M. Nogi, S. Iwamoto, A. N. Nakagaito and H. Yano, Adv. Mater. , 2009, 21 , 1595 – 1598. 24 J. Sugiyama, R. Vuong and H. Chanzy, Macromolecules , 1991, 24 , 4168 – 4175. 25 Z. Fang, H. Zhu, Y. Yuan, D. Ha, S. Zhu, C. Preston, Q. Chen, Y. Li, X. Han, S. Lee, G. Chen, T. Li, J. Munday, J. Huang and L. Hu, Nano Lett. , 2014, 14 , 765 – 773. 26 H. Sehaqui, A. Liu, Q. Zhou and L. A. Berglund, Biomacro- molecules , 2010, 11 , 2195 – 2198. 27 V. Kanniah, E. A. Grulke and T. Dru ff el, Thin Solid Films , 2013, 539 , 170 – 180. 28 P. F. Smith, I. Chun, G. Liu, D. Dimitrievich, J. Rasburn and G. J. Vancso, Polym. Eng. Sci. , 1996, 36 , 2129 – 2134.
can then be formed from these fibres in a few tens of seconds by conventional papermaking methods, ultimately resulting in dry materials with tensile strengths ranging from 50 – 100MPa and a strain-at-break of up to 44%; the highest work of fracture observed being almost 21 MJ m − 3 , which surpass by far any earlier reported paper. Materials made of fibres with a degree of modification of at least 24% showed distinct thermoplastic features in DMTA and could be hot pressed so that the fibres were completely fused together, after which no individual fibres could be seen by SEM, demonstrating a high molecular mobility upon heating. This indicates that these novel thermo- plastic papers and films can find a use in new value-added applications such as complex-shaped, heat-sealed 3D-formed packaging. Furthermore, films from highly modified fibres had a high density and high transparency, and both properties were further increased by hot pressing; the most modified material had a density of 1450 kg m − 3 and a light transmit- tance of 89% after hot pressing. In fact, the densities of the most modified materials were so high that they could act as oxygen barriers. Films with a degree of oxidation of 24 and 40% showed, at 80% RH, oxygen permeabilities of 12 and 23 ml μm (m 2 kPa24 h) − 1 , respectively. This is, to the best of our knowledge, the first report of an oxygen barrier formed by a conventional (laboratory) papermaking protocol, with pro- duction times similar to those of the reference papers, which presumably facilitates large-scale industrial production of this novel high-performance cellulose material. Acknowledgements The financial support from the Swedish Innovation Agency VINNOVA, through the BiMaC Innovation Excellence Centre, is acknowledged. The centre member StoraEnso AB, Karlstad, Sweden, is recognised for carrying out the oxygen permeability measurements. L. Wågberg also acknowledges the financial support from the Wallenberg Wood Science Center.
Notes and references
1 D. Klemm, B. Heublein, H.-P. Fink and A. Bohn, Angew. Chem., Int. Ed. , 2005, 44 , 3358 – 3393. 2 S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund and T. Peijs, J. Mater. Sci. , 2010, 45 , 1 – 33. 3 D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray and A. Dorris, Angew. Chem., Int. Ed. , 2011, 50 , 5438 – 5466. 4 N. Lavoine, I. Desloges, A. Dufresne and J. Bras, Carbohydr. Polym. , 2012, 90 , 735 – 764.
3332 | Green Chem. , 2016, 18 , 3324 – 3333
This journal is © The Royal Society of Chemistry 2016
Made with FlippingBook Ebook Creator