PAPERmaking! Vol9 Nr3 2023

504

GRAY-STUART ET AL .

of Hussain et al. 8 that conditions of constant high humidity can result in poorer box performance than cycling when the load is greater than 20% BCT and therefore that this factor plays an important role in box failure. ACKNOWLEDGEMENT Open access publishing facilitated by Massey University, as part of the Wiley - Massey University agreement via the Council of Australian University Librarians. DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding author upon reasonable request. Open access publishing facilitated by Massey University, as part of the Wiley - Massey University agreement via the Council of Australian University Librarians.

15. Leake C, Wojcik R. Humidity cycling rates: how they influence container life spans: Corrugated containers. Tappi Journal . 1993;76(10):26-30. 16. Urbanik T. A more mechanistic model of the compression strain-load response of paper. Journal of Pulp and Paper Science . 2002;28(6): 211-216. 17. Habeger Jr CC, Coffin D. The role of stress concentrations in acceler- ation creep and sorption-induced physical aging. 1999. 18. Van Hung D, Nakano Y, Tanaka F, Hamanaka D, Uchino T. Preserving the strength of corrugated cardboard under high humidity condition using nano-sized mists. Composites Science and Technology . 2010; 70(14):2123-2127. doi:10.1016/j.compscitech.2010.08.011. 19. Sherman NNL. Investigation into the effect product can have on box failure during creep tests. 2012. 20. Peleman D, Singh J, Saha K, Roy S. Evaluation of a bulge reduction technology for corrugated fiberboard containers under static compression. Journal of Applied Packaging Research . 2020;12(1):6. 21. Coffin DW. The creep response of paper. in 13th Fundamental Research Symposium, Cambridge. 2005. 22. Morgan DG. A mechanistic creep model and test procedure. Appita: Technology, Innovation, Manufacturing, Environment . 2004;57(4):299 doi:10.1016/B978-012226570-9/50076-4. 23. Nevins AL. Significant Factors Affecting Horticultural Corrugated Fibreboard Strength: A Thesis Presented in Partial Fulfilment of the Require- ments for the Degree of Doctor of Philosophy in Food Engineering at Mas- sey University, Palmerston North, New Zealand . Massey University; 2008. 24. Eagleton DG. Creep Properties of Corrugated Fibreboard Containers for Produce in Simulated Road Transport Environment . Victoria University of Technology; 1995. 25. Ruiz-Garcia L, Barreiro P, Robla JI, Lunadei L. Testing ZigBee motes for monitoring refrigerated vegetable transportation under real conditions. Sensors . 2010;10(5):4968-4982. doi:10.3390/s100504968. 26. Kutt H, Mithel B. Studies on compressive strength of corrugated containers. Tappi . 1968;51(4):A79. 27. Gray-Stuart E. Unpublished data — Pallet transfer trial of dairy products in refrigerated shipping container. 2018. 28. Lukasse L and Leentfaar G, Humidity control and fresh air exchange in reefer containers: lowest feasible relative humidity, temperature and energy consumption. 2020. 29. Singh SP. Instability of stacked pallet loads due to misalignment. Journal of Testing and Evaluation . 1999;27(5):349-354. doi:10.1520/JTE12236J. 30. Baker MW. Effect of pallet deckboard stiffness and unit load factors on corrugated box compression strength. Virginia Tech . 2016;29(4-5): 263-274. doi:10.1002/pts.2201. 31. Quesenberry C, Horvath L, Bouldin J, White MS. The effect of pallet top deck stiffness on the compression strength of asymmetrically supported corrugated boxes. Packaging Technology and Science . 2020; 33(12):547-558. doi:10.1002/pts.2533. 32. Byrd V, Koning Jr J. Corrugated fiberboards: edgewise compression creep in cyclic relative humidity environments [Southern pine pulps]. Tappi [Technical Association of the Pulp and Paper Industry], 1978. 33. Popil RE, Hojjatie B. Effects of component properties and orientation on corrugated container endurance. Packaging Technology and Science . 2010;23(4):189-202. doi:10.1002/pts.889. 34. Niskanen K. Mechanics of Paper Products . Walter de Gruyter; 2011. How to cite this article: Gray-Stuart EM, Wade K, Redding GP, Parker K, Bronlund JE. Influence of different box preparations on creep performance of corrugated fibreboard boxes subject to constant and cycling relative humidity environments. Packag Technol Sci . 2022;35(6):497-504. doi:10.1002/pts.2646

ORCID Eli M. Gray-Stuart

https://orcid.org/0000-0002-0820-3131 https://orcid.org/0000-0002-7556-7752

John E. Bronlund

REFERENCES 1. Market Statistics and Future Trends in Global Packaging. 2008, World Packaging Organisation. WWW.worldpackaging.org 2. Frank B. Corrugated box compression — a literature survey. Packaging Technology and Science . 2014;27(2):105-128. doi:10.1002/pts.2019. 3. Hussain S, Coffin DW, Todoroki C. Investigating creep in corrugated packaging. Packaging Technology and Science . 2017;30(12):757-770. doi:10.1002/pts.2323. 4. Köstner V, Ressel JB, Sadlowsky B, Böröcz P. Measuring the creep behaviour of corrugated board by cascade and individual test rig. Journal of Applied Packaging Research . 2018;10(1):4. doi: 10.14513/actatechjaur.v10.n2.445. 5. Urbanik TJ. Hygroexpansion-creep model for corrugated fiberboard. Wood and Fiber Science . 1995;27(2):134-140. 6. Urbanik TJ, Lee SK. Swept sine humidity schedule for testing cycle period effects on creep. Wood and Fiber Science . 2007;27(1):68-78. 7. Coffin DW, Niskanen K, Gustafsson P, Berglund L, Hagglund R, Mechanics of Paper Products . 2011, De Gruyter, doi:10.1515/ 9783110254631 8. Zhao LL. Evaluation of the Performance of Corrugated Shipping Containers: Virgin Versus Recycled Boards . Victoria University of Technology; 1993. 9. Allaoui S, Aboura Z, Benzeggagh M. Effects of the environmental conditions on the mechanical behaviour of the corrugated cardboard. Composites Science and Technology . 2009;69(1):104-110. doi:10.1016/j.compscitech.2007.10.058. 10. Marcondes J. Corrugated fibreboard in modified atmospheres: mois- ture sorption/desorption and shock cushioning. Packaging Technology and Science . 1996;9(2):87-98. doi:10.1002/pts.2770090204. 11. Navaranjan N, Dickson A, Paltakari J, Ilmonen K. Humidity effect on compressive deformation and failure of recycled and virgin layered corrugated paperboard structures. Compos Part B Eng . 2013;45(1): 965-971. doi:10.1016/j.compositesb.2012.05.037. 12. Bronkhorst C. Towards a more mechanistic understanding of corru- gated container creep deformation behaviour. Journal of Pulp and Paper Science . 1997;23(4):J174-J181. 13. Koning Jr J, Stern R. Long-term creep in corrugated fiberboard con- tainers. Tappi [Technical Association of the Pulp and Paper Industry], 1977. 14. Leake C. Measuring corrugated box performance. Tappi Journal . 1988;71(10):71-75.

Made with FlippingBook flipbook maker