6. CONCLUSIONS AND FUTURE WORKS In this study, we have presented a methodology for implementing predictive maintenance utilizing a vast array of vibration data, despite limited availability of failure labels. Our approach was validated on multiple paper machines and demonstrated exceptional performance on various test and validation datasets. Unfortunately, due to commercial confidentiality, we are unable to disclose the original dataset. Nonetheless, our findings serve as a valuable contribution towards demonstrating the effectiveness of a well-designed predictive maintenance system. 7. ACKNOWLEDGMENTS This work was made possible thanks to the support of Mondi Group AG. A special thanks to the colleagues from the plants and the headquarter that committed their time and knowledge to the success of this work. 8. REFERENCES [1] M. Paolanti, L. Romeo, A. Felicetti, A. Mancini, E. Frontoni und J. Loncarski, „Machine Learning approach for Predictive Maintenance in Industry 4.0,“ 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 2018. [2] H. M. Hashemian und W. C. Bean, „State -of-the-art predictive maintenance techniques,“ EEE Transactions on Instrumentation and measurement, vol. 60, no. 10, p. 3480 – 3492, 2011. [3] S.- j. Wu, N. Gebraeel, A. Lawley und Y. Yih, „A neural network integrated decision support system for condition- based optimal predictive maintenance policy,“ IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 37, no. 2,, p. 226 – 236, 2007. [4] E. Frontoni, R. Pollini, P. Russo, P. Zingaretti und G. Cerri, „Hdomo: Smart sensor integration for an active and independent longevity of the elderly,“ Sensors, vol. 17, no. 11, p. 2610, 2017. [5] C. Chen, G. Vachtsevanos und M. E. Orchard, „Machine remaining useful life prediction: An integrated adaptive neuro-fuzzy and high- order particle filtering approach,“ Mechanical Systems and Signal Processing, pp. 597-607, 2012. [6] M. Paolanti, E. Frontoni, A. Mancini, R. Pierdicca und P. Zingaretti, „Automatic classification for anti mixup events in advanced manufacturing system,“ ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2015. [7] S. Naspetti, R. Pierdicca, S. Mandolesi, M. Paolanti, E. Frontoni und R. Zanoli, „Automatic analysis of eye -tracking data for augmented reality applications: A prospective outlook, “ International Conference on Augmented Reality, Virtual Reality and Computer Graphics, 2016. [8] D. Raffaele und T. Ondruch, „Data -driven soft sensor for continuous production monitoring: an application to paper strength,“ in 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) , Vienna, 2020. [9] Z. He, J. Qian, J. Li, M. Hong und Y. Man, „Data -driven soft sensors of papermaking process and its application to cleaner production with multi- objective optimization,“ Journal of Cleaner Production, 2022. [10] T. Jani, O. Markku, M. Ritala, R. Risto, M. Markku, G. Jussi, V. Mikko, J. Teijo und R. Mika, „Mass -balance based soft
sensor for monitoring ash content at two-ply paperboard manufacturing,“ Nordic Pulp & Paper Research Journal, pp. 175-183, 2022. [11] M. Yuwono, Y. Qin, J. Zhou, Y. Guo und B. Celler, „ Automatic bearingfault diagnosis using particle swarm clustering and Hidden Markov Model,“ Eng.Appl. Artif. Intell., p. 88 – 100, 2016. [12] A. Soylemezoglu, S. Jagannathan und C. Saygin, „Mahalanobis taguchi system(MTS) as a prognostics tool for rolling element bearing failures,“ J. Manuf. Sci.Eng., 2010. [13] N. Stadler und S. Mukherjee, „Penalized estimation in highdimensional hidden markov models with state-specific graphical models,“ The Annals of Applied Statistics, pp. 2157 - 2179, 2013. [14] Y. Lei, N. Li, L. Guo, N. Li, T. Yan und J. Lin, „Machinery health prognostics: A systematic review from data acquisition to rul prediction,“ Mechanical Systems and Signal, pp. 799-834, 2018. [15] Z. Huang, Z. Xu, X. Ke, W. Wang und Y. Sun, „Remaining useful life prediction for an adaptive skew-Wiener process model,“ Mech. Syst. Signal Process, pp. 294-306, 2017. [16] Z. Zhang, X. Si und C. Hu, „An age - and state-dependent nonlinear prognostic mo del for degrading systems,“ IEEE Trans. Reliab., pp. 1214-1228, 2015. [17] M. Gašperin, Ð. Juricˇic´ , P. B. Boškoski und J. Vizˇin, „Model -based prognostics of gear health using stochastic dynamical models,“ Mech. Syst. Signal Process., pp. 537- 548, 2011. [18] J. Hu und P. Tse, „A relevance vector machine -based approach with application to oil sand pump prognostics,“ Sensors, pp. 12663 - 12686, 2013. [19] W. Rüdiger und J. Hipp, „Crisp -dm: towards a standard process modell for data mining,“ Computer Science, 2000. [20] D. Bently, Predictive Maintenance Through the Monitoring and Diagnosticsof Rolling Element Bearings, Application Note 44, 1989. [21] Schaeffler Technologies A.G. & Co. KG, Manualfor the design and calculation of rolling bearings, 2015. [22] S. Schwendemann, Z. Amjad und A. Sikora, „A survey of machine-learning techniques for condition monitoringand predictive maintenance of bearings in grinding machines,“ Computers in Industry, Bd. 125, p. 103380, 2021. [23] Y. Li, H. Cao und X. Chen, „Mod elling and vibration analysis of machine tool spin-dle system with bearing defects,“ International Journal of Mechatronics and Manufacturing Systems Vol. 8, No. 1-2, pp. 33-48, 2015. [24] P. McFadden und J. Smith, „The vibration produced by multiple poi nt defectsin a rolling element bearing,“ Journal of Sound Vibration, Bd. 98, Nr. 2, p. 263 – 273, 1985. [25] F. Dalvand, M. Kang, S. Dalvand und M. Pecht, „Detection of generalized-roughness and single-point bearing faults using linear prediction-based cu rrentnoise cancellation,“ IEEE Transactions on Industrial Electronics, Bd. 65, Nr. 12, pp. 9728 - 9738, 2018. [26] Y. Lei, Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating Machinery, Oxford: Elsevier Butterworth-Heinemann, 2016. [27] C. Hu, B. D. Youn, P. Wang und J. T. Yoon, „Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life,“ Reliability Engineering & System Safety, Bd. 103, pp. 120-135, 2012.
Made with FlippingBook flipbook maker