PAPERmaking! Vol9 Nr3 2023

[28] Z. Huang, Z. Xu, X. Ke, W. Wang und Y. Sun, „Remaining useful life prediction for an adaptive skew-Wiener process model,“ Mechanical Systems and Signal Processing, Bd. 87, pp. 294-306, 2017. [29] A. Malh, R. Yan und R. X. Gao, „Prognosis of Defect Propa gation Based on Recurrent Neural Networks,“ IEEE Transactions on Instrumentation and Measurement, Bd. 60, Nr. 3, pp. 703 - 711, 2011 . [30] L. Hu, N.-q. Hu, B. Fan, F.-s. Gu und X.-y. Zhang, „Modeling the Relationship between Vibration Features and Condition Parameters Using Relevance Vector Machines for Health Monitoring of Rolling Element Bearings under Varying Operation Conditions,“ Mathematical Problems in Engineering, Bd. vol. 2015, 2015. [31] H. Liao und Z. Tian, „A framework for predicting the remaining useful life of a single unit under time-varying operating conditions,“ IIE Transactions, Bd. 45, Nr. 9, pp. 964-980, 2013. [32] D. Lin, M. Wiseman, D. Banjevic und . A. K. Jardine, „An approach to signal processing and condition-based maintena nce for gearboxes subject to tooth failure,“ Mechanical Systems and Signal Processing, Bd. 18, Nr. 5, pp. 993-1007, 2004. [33] R. Li, P. Sopon und D. He, „Fault features extraction for bearing prognostics,“ Journal of Intelligent Manufacturing , Bd. 23, p. 313 – 321, 2012. [34] A. Widodo und . B.- S. Yang, „Application of relevance vector machine and survival probability to machine degradation assessment,“ Expert Systems with Applications, Bd. 38, Nr. 3, pp. 2592-2599, 2011. [35] T. Benkedjouh, . K. Medjaher, N. Zerhouni und S. Rechak , „Health assessment and life prediction of cutting tools based on support vector regression,“ Journal of Intelligent Manufacturing, Bd. 26, p. 213 – 223, 2013. [36] H. Qiu, J. Lee , J. Lin und G. Yu , „Robust performance degradation assessment methods for enhanced rolling element bearing prognostics,“ Advanced Engineering Informatics, Bd. 17, Nr. 3-4, pp. 127-140, 2003. [37] S. Hong , Z. Zhou , E. Zio und K. Hong, „Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method,“ Digital Signal Processing, Bd. 27, pp. 159-166, 2014. [38] S. Hong, Z. Zhou, E. Zio und W. Wang, „An adaptive method for health trend prediction of rotating bearings,“ Digital Signal Processing, Bd. 35, pp. 117-123, 2014. [39] Z. Xi , R. Jing, P. Wang und C. Hu, „A copula -based sampling method for data- driven prognostics,“ Reliability Engineering & System Safety, Bd. 132, pp. 72-82, 2014. [40] „A similarity -based prognostics approach for Remaining Useful Life estimation of engineered systems,“ in 2008 International Conference on Prognostics and Health Management , Denver, CO, USA, 2008. [41] P. Wang, . B. D. Youn und C. Hu, „A generic probabilistic framework for structural health prognostics and uncertainty management,“ Mechanical Systems and Signal Processing, Bd. 28, pp. 622-637, 2012. [42] C. Hu, . B. D. Youn, P. Wang und . J. T. Yoon, „Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life,“ Reliability Engineering & System Safety, Bd. 103, pp. 120-135, 2012.

[43] J. Pellegrino, M. Justiniano und A. Raghunathan, „Measurement Science R oadmap for Prognostics and Health Management for Smart Manufacturing Systems,“ National Institute of Standards and Technology, , Gaithersburg, 2016. [44] W. Wang, „A model to predict the residual life of rolling element bearings given monitored condition information to date,“ IMA Journal of Management Mathematics, Bd. 13, pp. 3 - 16, 2022. [45] Y. Qian, R. Yan und S. Hu, „Bearing Degradation Evaluation Using Recurrence Quantification Analysis and Kalman Filter,“ IEEE Transactions on Instrumentation and Measurement , Bd. 63, Nr. 11, pp. 2599 - 2610, 2014. [46] X. Jin, Y. Sun, Z. Que, Y. Wang und T. W. S. Chow, „Anomaly detection and fault prognosis for bearings,“ IEEE Transactions on Instrumentation and Measurement, Bd. 65, Nr. 9, pp. 2046-2054, 2016. [47] A. Ajami und M. Daneshvar, „Data driven approach for fault detection and diagnosis of turbine in thermal power plant using Independent Component Analysis (ICA),“ International Journal of Electrical Power & Energy Systems, Bd. 43, Nr. 1, pp. 728-735, 2012. [48] „Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models,“ Mechanical Systems and Signal Processing, Bd. 25, Nr. 7, pp. 2573-2588, 2011. [49] Y. Hu, H. Li , X. Liao, E. Song, H. Liu und Z. Chen, „A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems,“ Mechanical Systems and Signal Processing, Bde. %1 von %276-77, pp. 729-741, 2016. [50] J. Kimotho,, C. Sondermann-Wölke, . T. Meyer und W. Sextro , „Machinery Prognostic Method Based on Multi - Class Support Vector Machines and Hybrid Differential Evolution – Particle Swarm Optimization,“ Chemical engineering transactions, Bd. 33, pp. 619-624, 2013. [51] E. Ramasso, M. Rombaut und N. Zerhouni , „Joint Prediction of Continuous and Discrete States in Time-Series Based on Belief Functions,“ IEEE Transactions on Cybernetics, Bd. 1, pp. 37-50, 2013. [52] K. Javed, R. Gouriveau und N. Zerhouni, „A New Multivariate Approach for Prognostics Based on Extreme Learning Machine and Fuzzy Clustering,“ IEEE Transactions on Cybernetics , Bd. 45, Nr. 12, pp. 2626 - 26394, 2015. [53] P. Scanlon, D. F. Kavanagh und F. Boland, „Residual Life Prediction of Rotating Machines Using Acoustic Noise S ignals,“ IEEE Transactions on Instrumentation and Measurement, Bd. 62, Nr. 1, pp. 95-108, 2012. [54] C. Liu und K. Gryllias, „A semi -supervised Support Vector Data Description-based fault detection method for rolling element bearings based on cyclic spe ctral analysis,“ Mechanical Systems and Signal Processing, Bd. 140, 2020. [55] S. H. Wang, S. B. Xing, Y. G. Lei, N. Lu und N. P. Li, „Vibration indicator -based graph convolutional network for semi- supervised bearing fault diagnosis,“ in IOP Conference Series: Materials Science and Engineering , 2021 . [56] D. N. Avendano, N. Vandermoortele, C. Soete , P. Moens, A. P. Ompusunggu , D. Deschrijver und S. Van Hoecke, „A Semi-Supervised Approach with Monotonic Constraints for Improved Remaining Useful Life Estimation,“ Sensors , Bd. 22, 2022.

Made with FlippingBook flipbook maker